Механизмы химических реакции в органической химии. Характерные химические свойства углеводородов

22.07.2020

Классификация реакций По числу исходных и конечных веществ: 1. Присоединение 2. Отщепление (элиминирование) 3. Замещение

Классификация реакций По механизму разрыва связей: 1. Гомолитические (радикальные) радикалы 2. Гетеролитические (ионные) ионы

Механизм реакции Механизм – детальное описание химической реакции по стадиям с указанием промежуточных продуктов и частиц. Схема реакции: Механизм реакции:

Классификация реакций по типу реагентов 1. Радикальные Радикал –химически активная частица с неспаренным электроном. 2. Электрофильные Электрофил – электронодефицитная частица или молекула с электронодефицитным атомом. 3. Нуклеофильные Нуклеофил – анион или нейтральная молекула, имеющая атом с неподеленной электронной парой.

Виды химических связей в органических веществах Основной тип связи – ковалентная (реже встречается ионная) Сигма-связь (σ-): Пи-связь (-)

АЛКАНЫ- алифатические (жирные) углеводороды «Алифатос» -масло, жир (греч). Cn. H 2 n+2 Предельные, насыщенные углеводороды

Гомологический ряд: CH 4 - метан C 2 H 6 - этан C 3 H 8 - пропан C 4 H 10 - бутан C 5 H 12 - пентан т. д. С 6 Н 14 - гексан С 7 Н 16 - гептан С 8 Н 18 - октан С 9 Н 20 - нонан С 10 Н 22 – декан и С 390 Н 782 –ноноконтатриктан (1985 г)

Атомно-орбитальная модель молекулы метана В молекуле метана у атома углерода уже нет S- и Р-орбиталей! Его 4 гибридные, равноценные по энергии и по форме SP 3 -орбитали, образуют 4 -связи с Sорбиталями атома водорода. Н Н 4 -связи

Реакция нитрования Коновалов Дмитрий Петрович (1856 -1928) 1880 год. Первая удачная попытка оживить «химических мертвецов» , которыми считались алканы. Нашел условия нитрования алканов. Рис. Источник: http: //images. yandex. ru.

Химические свойства I. Реакции с разрывом С-Н-связей (реакции замещения): 1. галогенирование 2. нитрование 3. сульфохлорирование II. Реакции с разрывом С-С-связей: 1. горение 2. крекинг 3. изомеризация

Как найти химика? Если хочешь найти химика, спроси, что такое моль и неионизованный. И если тот начнет говорить о пушных зверях и организации труда, спокойно уходи. Писатель-фантаст, популяризатор науки Айзек Азимов (1920– 1992) Рис. Источник: http: //images. yandex. ru.

1. Реакция галогенирования Хлорирование: RH + Cl 2 hv RCl + HCl Бромирование: RH + Br 2 hv RBr + HBr Например, хлорирование метана: CH 4 + Cl 2 CH 3 Cl + HCl

Стадии свободно-радикального механизма Схема реакции: CH 4 + Cl 2 CH 3 Cl + HCl Механизм реакции: I. Инициирование цепи – стадия зарождения свободных радикалов. Cl Cl 2 Cl Радикал - активная частица, инициатор реакции. – – Стадия требует энергии в виде нагревания или освещения. Последующие стадии могут протекать в темноте, без нагревания.

Стадии свободно-радикального механизма II. Рост цепи – основная стадия. CH 4 + Cl HCl + CH 3 + Cl 2 CH 3 Cl + Cl Стадия может включать несколько подстадий, на каждой из которых образуется новый радикал, но не Н !!! На II, основной стадии, обязательно образуется основной продукт!

Стадии свободно-радикального механизма III. Обрыв цепи – рекомбинация радикалов. Cl + Cl Cl 2 Cl + CH 3 CH 3 Cl CH 3 + CH 3 CH 3 -CH 3 Два любых радикала соединяются.

Селективность замещения Селективность – избирательность. Региоселективность – избирательность в определенной области реакций. Например, селективность галогенирования: 45% 3% Вывод? 55% 97%

Селективность галогенирования зависит от следующих факторов: Условия реакции. При низких температурах идет более селективно. Природа галогена. Чем активнее галоген, тем менее избирательна реакция. F 2 реагирует очень энергично, с разрушением С-С-связей. I 2 не реагирует с алканами в указанных условиях. Строение алкана.

Влияние строения алкана на селективность замещения. Если атомы углерода в алкане неравноценны, то замещение при каждом из них идет с разной скоростью. Относительн. скорость реакции замещения Первич. атом Н Вторич. атом Н Трет. атом Н хлорирование 1 3, 9 5, 1 бромирование 1 82 1600 Вывод?

Для отрыва третичного атома водорода требуется меньше энергии, чем для отрыва вторичного и первичного! Формула алкана Результат гомолиза ЕД, к. Дж/моль СН 4 СН 3 + Н 435 СН 3 - СН 3 С 2 Н 5 + Н 410 СН 3 СН 2 СН 3 (СН 3)2 СН + Н 395 (СН 3)3 СН (СН 3)3 С + Н 377

Направление протекания реакций Любая реакция протекает преимущественно в направлении образования более устойчивой промежуточной частицы!

Промежуточная частица в радикальных реакциях - свободный радикал. Наиболее легко образуется наиболее устойчивый радикал! Ряд устойчивости радикалов: R 3 C > R 2 CH > RCH 2 > CH 3 Алкильные группы проявляют электронодонорный эффект, за счет чего стабилизируют радикал

Реакция сульфохлорирования Схема реакции: RH + Cl 2 + SO 2 RSO 2 Cl + HCl Механизм реакции: 1. Cl Cl 2 Cl 2. RH + Cl R + HCl R + SO 2 RSO 2 + Cl 2 RSO 2 Cl + Cl и т. д. 3. 2 Cl Cl 2 и т. д.

Реакция Коновалова Д. П. Нитрование по Коновалову проводят действием разбавленной азотной кислоты при температуре 140 о. С. Схема реакции: RH + HNO 3 RNO 2 + H 2 O

Механизм реакции Коновалова HNO 3 N 2 O 4 1. N 2 O 4 2 NO 2 2. RH + NO 2 R + HNO 2 R + HNO 3 RNO 2 + OH RH + OH R + H 2 O и т. д. 3. Обрыв цепи.

Алкены – ненасыщенные углеводороды с одной С=С связью Cn. H 2 n С=С – функциональная группа алкенов

Химические свойства алкенов Общая характеристика Алкены – реакционноспособный класс соединений. Они вступают в многочисленные реакции, большинство из которых идут за счет разрыва менее прочной пи-связи. Е С-С (σ-) ~ 350 Кдж/моль Е С=С (-) ~ 260 Кдж/моль

Характерные реакции Присоединение – наиболее характерный тип реакций. Двойная связь – донор электронов, поэтому она склонна присоединять: Е – электрофилы, катионы или радикалы

Примеры реакций электрофильного присоединения 1. Присоединение галогенов – Присоединяются не все галогены, а только хлор и бром! – Поляризация нейтральной молекулы галогена может происходить под действием полярного растворителя или под действием двойной связи алкена. Красно-коричневый раствор брома становится бесцветным

Электрофильное присоединение Реакции протекают при комнатной температуре, не требуют освещения. Механизм ионный. Схема реакции: XY = Cl 2, Br 2, HCl, HBr, HI, H 2 O

Сигма – комплекс является карбокатионом – частицей с положительным зарядом на атоме углерода. Если в реакционной среде присутствуют другие анионы, то они тоже могут присоединяться к карбокатиону.

Например, присоединение брома, растворенного в воде. Эта качественная реакция на двойную С=С-связь протекает с обесцвечиванием раствора брома и образованием двух продуктов:

Присоединение к несимметричным алкенам Региоселективность присоединения! Правило Марковникова (1869): кислоты и вода присоединяются к несимметричным алкенам таким образом, что водород присоединяется к более гидрированному атому углерода.

Марковников Владимир Васильевич (1837 - 1904) Выпускник Казанского университета. С 1869 года – профессор кафедры химии. Основатель научной школы. Рис. Источник: http: //images. yandex. ru.

Объяснение правила Марковникова Реакция протекает через образование наиболее устойчивой промежуточной частицы – карбокатиона. первичный вторичный, более устойчивый

Ряд устойчивости карбокатионов: третичный вторичный первичный метильный Правило Марковникова в современной формулировке: присоединение протона к алкену происходит с образованием более стабильного карбокатиона.

Антимарковниковское присоединение CF 3 -CH=CH 2 + HBr CF 3 -CH 2 Br Формально реакция идет против правила Марковникова. CF 3 – электроноакцепторный заместитель Другие электроноакцепторы: NO 2, SO 3 H, COOH, галогены и т. п.

Антимарковниковское присоединение более устойчивый неустойчивый CF 3 – электроноакцептор, дестабилизирует карбокатион Реакция только формально идет против правила Марковникова. Фактически ему подчиняется, так как идет через более устойчивый карбокатион.

Перекисный эффект Хараша X CH 3 -CH=CH 2 + HBr CH 3 -CH 2 Br X = O 2, H 2 O 2, ROOR Механизм свободнорадикальный: 1. H 2 O 2 2 OH + HBr H 2 O + Br 2. CH 3 -CH=CH 2 + Br CH 3 -CH -CH 2 Br более устойчивый радикал CH 3 -CH -CH 2 Br + HBr CH 3 -CH 2 Br + Br и т. д. 3. Два любых радикала соединяются между собой.

Электрофильное присоединение 3. Гидратация – присоединение воды – Реакция протекает в присутствии кислотных катализаторов, чаще всего это – серная кислота. – Реакция подчиняется правилу Марковникова. Дешевый способ получения спиртов

На экзамене академик Иван Алексеевич Каблуков просит студента рассказать, как в лаборатории получают водород. «Из ртути» , - отвечает тот. «Как это "из ртути"? ! Обычно говорят "из цинка", а вот из ртути - это что-то оригинальное. Напишите-ка реакцию» . Студент пишет: Hg = Н + g И говорит: «Ртуть нагревают; она разлагается на Н и g. Н - водород, он легкий и поэтому улетает, а g - ускорение силы тяжести, тяжелое, остается» . «За такой ответ надо ставить "пятерку", - говорит Каблуков. - Давайте зачетку. Только "пятерку" я сначала тоже подогрею. "Три" улетает, а "два" остается» .

Двое химиков в лаборатории: - Вась, опусти руку в этот стакан. - Опустил. - Что-нибудь чувствуешь? - Нет. - Значит серная кислота в другом стакане.

Ароматические углеводороды Ароматический – душистый? ? Ароматические соединения – это бензол и вещества, напоминающие его по химическому поведению!

Методические указания для самостоятельной работы студентов 1-го курса по биологической и биоорганической химии

(модуль 1)

Утверждено

Учёным советом университета

Харьков ХНМУ

Основные типы и механизмы реакций в органической химии: Метод. указ. для студентов 1-го курса / сост. А.О. Сыровая, Л.Г. Шаповал, В.Н. Петюнина, Е.Р. Грабовецкая, В.А. Макаров, С.В. Андреева, С.А. Наконечная, Л.В. Лукьянова, Р.О. Бачинский, С.Н. Козуб, Т.С. Тишакова, О.Л. Левашова, Н.В. Копотева, Н.Н. Чаленко. – Харьков: ХНМУ, 2014. – С. 32.

Составители: А.О. Сыровая, Л.Г. Шаповал, В.Н. Петюнина, Е.Р. Грабовецкая, В.А. Макаров, С.В. Андреева, Л.В. Лукьянова, С.А. Наконечная, Р.О. Бачинский, С.Н. Козуб, Т.С. Тишакова, О.Л. Левашова, Н.В. Копотева, Н.Н. Чаленко

Тема I: классификация химических реакций.

РЕАКЦИОННАЯ СПОСОБНОСТЬ АЛКАНОВ, АЛКЕНОВ, АРЕНОВ, СПИРТОВ, ФЕНОЛОВ, АМИНОВ, АЛЬДЕГИДОВ, КЕТОНОВ И КАРБОНОВЫХ КИСЛОТ

Мотивационная характеристика темы

Изучение данной темы является основой для понимания некоторых биохимических реакций, которые имеют место в процессе обмена веществ в организме (пероксидное окисление липидов, образование гидроксикислот из ненасыщенных в цикле Кребса и др.), а также для понимания механизма подобных реакций при синтезе врачебных препаратов и аналогов естественных соединений.

Учебная цель

Уметь прогнозировать способность основных классов органических соединений вступать в реакции гомолитического и гетеролитического взаимодействия согласно их электронному строению и электронным эффектам заместителей.

1. СВОБОДНО-РАДИКАЛЬНЫЕ И ЕЛЕКТРОФИЛЬНЫЕ РЕАКЦИИ (РЕАКЦИОННАЯ СПОСОБНОСТЬ УГЛЕВОДОРОДОВ)

Учебно-целевые вопросы

1. Уметь описать механизмы следующих реакций:

Радикального замещения - R S

Электрофильного присоединения - A E

Электрофильного замещения - S E

2. Уметь объяснить влияние заместителей на реакционную способность при електрофильних взаимодействиях исходя из электронных эффектов.

Исходный уровень

1. Строение атома углерода. Типы гибридизации его электронных орбиталей.

2. Строение, длина и энергия - и - связей.

3. Конформации циклогексана.

4. Сопряжение. Открытые и закрытые (ароматические) сопряженные системы.

5. Электронные эффекты заместителей.

6. Переходное состояние. Электронное строение карбкатиона. Интермедиаторы - и  - комплексы.

Практические нав ы ки

1. Научиться определять возможность разрыва ковалентной связи, тип и механизм реакции.

2. Уметь экспериментально выполнять реакции бромирования соединений с двойными связями и ароматических соединений.

Контрольные вопросы

1. Приведите механизм реакции гидрирования этилена.

2. Опишите механизм реакции гидратации пропеновой кислоты. Объясните роль кислотного катализа.

3. Напишите уравнение реакции нитрирования толуола (метилбензола). По какому механизму протекает эта реакция?

4. Объясните дезактивирующее и ориентирующее влияние нитрогруппы в молекуле нитробензола на примере реакции бромирования.

Учебные задачи и алгоритмы их решения

Задача №1. Опишите механизм реакции бромирования изобутана и циклопентана при облучении светом.

Алгоритм решения . Молекулы изобутана и циклопентана состоят из sp 3 гибридизованих атомов углерода. С - С связи в их молекулах неполярные, а связи С – Н малополярные. Эти связи достаточно легко подвергаются гомолитичному разрыву с образованием свободных радикалов - частичек, которые имеют неспаренные электроны. Таким образом, в молекулах этих веществ должна протекать реакция радикального замещения - R S -реакция или цепная.

Стадиями любой R S -реакции есть: инициирование, рост и обрыв цепи.

Инициирование - это процесс образования свободных радикалов при высокой температуре или облучении ультрафиолетом:

Рост цепи происходит за счет взаимодействия высокореакционноспособного свободного радикала Br с малополярной С - Н связью в молекуле циклопентана с образованием нового циклопентил-радикала:

Циклопентил-радикал взаимодействует с новой молекулой брома, вызывая в ней гомолитический разрыв связи и образуя бромоциклопентан и новый радикал брома:

Свободный радикал брома атакует новую молекулу циклопентана. Таким образом, стадия роста цепи повторяется многократно, т.е., происходит цепная реакция. Обрыв цепи завершает цепную реакцию за счет соединения разных радикалов:

Поскольку все углеродные атомы в молекуле циклопентана равноценные, образуется только моноциклобромпентан.

В изобутане С - Н связи не являются равноценными. Они отличаются энергией гомолитической диссоциации и стабильностью образованных свободных радикалов. Известно, что энергия разрыва С - Н связи увеличивается от третичного до первичного углеродного атома. Стабильность же свободных радикалов в таком же порядке уменьшается. Именно поэтому в молекуле изобутана реакция бромирования протекает региоселективно - по третичному атому углерода:

Надо указать, что для более активного радикала хлора региоселективность не придерживается в полной мере. При хлорировании замещению могут подлежать атомы водорода при любых атомах углерода, но содержимое продукта замещения при третичном углероде будет наибольшим.

Задача №2. На примере олеиновой кислоты опишите механизм реакции пероксидного окисления липидов, которые имеет место при лучевой болезни в результате повреждения клеточных мембран. Какие вещества выполняют роль антиоксидантов в нашем организме?

Алгоритм решения. Примером радикальной реакции есть пероксидное окисления липидов, при котором действия радикалов подвергаются ненасыщенные жирные кислоты, которые входят в состав клеточных мембран. При радиоактивном облучении возможный распад на радикалы молекул воды. Гидроксильные радикалы атакуют молекулу ненасыщенной кислоты по метиленовой группе, соседней с двойной связью. При этом образуется радикал, стабилизированный за счет участия неспаренного электрона в сопряжении с электронами -связей. Далее органический радикал взаимодействует с бирадикальной молекулой кислорода с образованием нестабильных гидропероксидов, которые распадаются с образованием альдегидов, которые окисляются до кислот - конечные продукты реакции. Следствием пероксидного окиснення является разрушение клеточных мембран:

Ингибирующее действие витамина Е (токоферола) в организме обусловлено его способностью связывать свободные радикалы, которые образуются в клетках:

В феноксидном радикале, который образовался, неспаренный электрон находится в сопряжении с -электронным облаком ароматического кольца, которое приводит к его относительной стабильности.

Задача №3. Приведите механизм реакции бромирования этилена.

Алгоритм решения. Для соединений, которые состоят из атомов углерода в состоянии sp 2 - или sp-гибридизации, типичными есть реакции, которые проходят с разрывом -связей, т.е., реакции присоединения. Эти реакции могут протекать по радикальному или ионному механизму в зависимости от природы реагента, полярности растворителя, температуры, и т.п.. Ионные реакции протекают под действием или электрофильных реагентов, которые имеют сродство к электрону, или нуклеофильных, которые отдают свои электроны. Электрофильными реагентами могут быть катионы и соединения, которые имеют атомы с незаполненными электронными оболочками. Простейший электрофильный реагент - протон. Нуклеофильные реагенты - это анионы, или соединения с атомами, которые имеют неразделенные электронные пары.

Для алкенов - соединений, которые имеют sp 2 - или sp-гибридизованный атом углерода, типичными есть реакции электрофильного присоединения - А Е реакции. В полярных растворителях в отсутствии солнечного света реакция галогенирования протекает по ионному механизму с образованием карбкатионов:

Под действием π-связи в этилене молекула брома поляризуется с образованием неустойчивого π-комплекса, который превращается в карбкатион. В нем бром связан с углеродом π-связью. Процесс завершается взаимодействием аниона брома с этим карбкатионом к конечному продукту реакции – дибромоэтана.

Задача №4 . На примере реакции гидратации пропена обоснуйте правило Марковникова.

Алгоритм решения. Поскольку молекула воды - нуклеофильный реагент, то ее присоединение по двойной связи без катализатора невозможно. Роль катализаторов в таких реакциях выполняют кислоты. Образование карбкатионов происходит при присоединении протона кислоты при разрыве π-связи:

К карбкатиону, который образовался, присоединяется молекула воды за счет спаренных электронов атома кислорода. Образуется стойкое алкильное производное оксония, которое стабилизируется с выделением протона. Продукт реакции вторпропанол (пропан-2-ол).

В реакции гидратации протон присоединяется согласно правилу Марковникова - к более гидрогенизированному атому углерода, поскольку, вследствие положительного индуктивного эффекта СН 3 группы именно к этому атому смещена электронная плотность. Кроме того, образованный вследствие присоединения протона третичный карбкатион более стабильный, чем первичный (влияние двух алкильных групп).

Задача № 5. Обоснуйте возможность образования 1,3-дибромопропана при бромировании циклопропана.

Алгоритм решения. Молекулы, которые представляют собой трех или четырехчленные циклы (циклопропан и циклобутан) проявляют свойства ненасыщенных соединений, поскольку электронное состояние их "банановых" связей напоминает π-связь. Поэтому подобно ненасыщенным соединениям они вступают в реакции присоединения с разрывом цикла:

Задача № 6. Опишите реакцию взаимодействия бромоводорода с бутадиеном-1,3. В чем особенность этой реакции?

Алгоритм решения. При взаимодействии бромоводорода с бутадиеном-1,3 образуются продукты 1,2 присоединение (1) и 1,4 присоединение (2):

Образование продукта (2) обусловлено наличием в сопряженной системе общей для всей молекулы π-электронного облака, вследствие чего она вступает в реакцию электрофильного присоединения (А Е - реакцию) в виде целого блока:

Задача № 7. Опишите механизм реакции бромирования бензола.

Алгоритм решения. Для ароматических соединений, которые содержат замкнутую сопряженно - электронную систему и которые имеют вследствие этого значительную прочность, характерны реакции электрофильного замещения. Наличие повышенной электронной плотности по обе стороны кольца защищают его от атаки нуклеофильными реагентами и наоборот - облегчают возможность атаки катионами и другими электрофильными реагентами.

Взаимодействие бензола с галогенами происходит в присутствии катализаторов - AlCl 3 , FeCl 3 (так называемых кислот Льюиса). Они вызывают поляризацию молекулы галогена, после чего она атакует π-электроны бензольного кольца:

π-комплекс σ-комплекс

В начале образуется π- комплекс, который медленно переходит в σ - комплекс, в котором бром образует ковалентную связь с одним из атомов углерода за счет двух из шести электронов ароматического кольца. Четыре π-электроны, которые остались, равномерно распределенные между пятью атомами углеродного кольца; σ-комплекс является менее выгодной структурой вследствие нарушения ароматичности, которая восстанавливается путем выброса протона.

К реакциям электрофильного замещения в ароматических соединениях относятся также сульфирование и нитрирование. Роль нитрирующего агента выполняет нитроил-катион - NO 2+ , который образуется при взаимодействии концентрированной серной и азотной кислот (нитрирующая смесь); а роль сульфирующего агента - катион SO 3 H + , или оксид серы (ІV), если сульфирование ведут олеумом.

Алгоритм решения. Активность соединений в S E -реакциях зависит от величины электронной плотности в ароматическом ядре (зависимость прямая). В связи с этим реакционная способность веществ должна рассматриваться во взаимосвязи с электронными эффектами заместителей и гетероатомов.

Аминогруппа в анилине проявляет +М эффект, вследствие чего в бензольном ядре электронная плотность увеличивается и наибольшая ее концентрация наблюдается в орто- и пара-положениях. Протекание реакции облегчается.

Нитрогруппа в нитробензоле имеет -І и -М эффекты, поэтому дезактивирует бензольное кольцо и именно в орто- и парах-положениях. Поскольку взаимодействие электрофила происходит в месте высочайшей электронной плотности, то в этом случае образуются мета-изомеры. Таким образом, электродонорные заместители - это орто- и пара-ориентанты (ориентанты І рода и активаторы S E -реакций; электроноакцепторные заместители - мета-ориентанты (ориентанты ІІ рода) дезактиваторы S E -реакций).

В пятичленных гетероциклах (пиррол, фуран, тиофен), которые относятся к π-избыточным системам, S E -реакции протекают легче, чем в бензоле; при этом более реакционноспособным является α-положение.

Гетероциклические системы с пиридиновым атомом азота являются π -недостаточными, поэтому тяжелее вступают в реакции электрофильного замещения; при этом электрофил занимает β-положение по отношению к атому азота.

Образуется при перекрывании атомных орбиталей и образовании общих электронных пар. В результате этого образуется общая для двух атомов орбиталь, на которой находится общая пара электронов. При разрыве связи судьба этих общих электронов может быть разной.

Обменный механизм образования ковалентной связи. Гомолитический разрыв связи

Орбиталь с неспаренным электроном, принадлежащая одному атому, может перекрываться с орбиталью другого атома, на которой также находится неспаренный электрон. При этом происходит образование ковалентной связи по обменному механизму:

Н· + ·Н -> Н: Н, или Н-Н

Обменный механизм образования ковалентной связи реализуется в том случае, если общая электронная пара образуется из неспаренных электронов, принадлежащих разным атомам.

Процессом, противоположным образованию ковалентной связи по обменному механизму, является разрыв связи, при котором к каждому атому отходит по одному электрону. В результате этого образуются две незаряженные частицы, имеющие неспаренные электроны:

Такие частицы называются свободными радикалами .

Свободные радикалы - атомы или группы атомов, имеющие неспаренные электроны.

Механизм разрыва ковалентной связи, при котором образуются свободные радикалы, называется гемолитическим или гомолизом (гомо - одинаковый, т. е. такой тип разрыва связи приводит к образованию одинаковых частиц).

Реакции, которые протекают под действием и при участии свободных радикалов, называются свободнорадикальными реакциями.

Гидроксил-анион притягивается к атому углерода (атакует атом углерода), на котором сосредоточен частичный положительный заряд, и замещает бром, точнее, бромид-анион.

В молекуле 1-хлорпропана электронная пара в связи С-Сl смещена в сторону атома хлора вследствие его большей электроотрицательности. При этом атом углерода, получивший частичный положительный заряд (§+), оттягивает электроны от связанного с ним атома углерода , тот, в свою очередь, от следующего:

Таким образом, индуктивный эффект передается по цепи, но быстро затухает: он практически не наблюдается уже через три ст-связи.

Рассмотрим другую реакцию - присоединение бромоводорода к этену:

СН2=СН2 + НВr -> СН3-СН2Вr

На начальной стадии этой реакции происходит присоединение катиона водорода к молекуле, содержащей кратную связь:

СН2=СН2 + Н+ -> СН2-СН3

Электроны л-связи сместились к одному атому углерода, на соседнем оказался положительный заряд, незаполненная орбиталь.

Устойчивость подобных частиц определяется тем, насколько хорошо скомпенсирован положительный заряд на атоме углерода. Эта компенсация происходит за счет смещения электронной плотности а-связи в сторону положительно заряженного атома углерода, т. е. положительного индуктивного эффекта (+1).

Группа атомов, в данном случае метильная группа, от которой электронная плотность оттягивается, обладает донорным эффектом, который обозначается +1.

Мезомерный эффект. Существует другой способ влияния одних атомов или групп на другие - мезомерный эффект, или эффект сопряжения.

Рассмотрим молекулу бутадиена-1,3:

СН2=СН СН=СН2

Оказывается, что двойные связи в этой молекуле - это не просто две двойные связи! Так как они находятся рядом, происходит перекрывание п -связей, входящих в состав соседних двойных, и образуется общее для всех четырех атомов углерода п -электронное облако. При этом система (молекула) становится более устойчивой. Это явление называется сопряжением (в данном случае п - п -сопряжением).

Дополнительное перекрывание, сопряжение л-связей, разделенных одной о-связью, приводит к их «усреднению». Центральная простая связь приобретает частичный «двойной» характер, становится прочнее и короче, а двойные - несколько ослабевают и удлиняются.

Другим примером сопряжения может служить влияние двойной связи на атом, имеющий неподеленную электронную пару.

Так, например, при диссоциации карбоновой кислоты неподеленная электронная пара остается на атоме кислорода :

Это приводит к повышению устойчивости образовавшегося при диссоциации аниона, увеличению силы кислоты.

Смещение электронной плотности в сопряженных системах с участием п-связей или неподеленных электронных пар называется мезомерным эффектом (М).

Основные механизмы протекания реакций

Мы выделили три основных типа реагирующих частиц - свободные радикалы, электрофилы, нуклеофилы и три соответствующих им типа механизмов реакций:

Свободнорадикальные;
электрофильные;
нуклеофилъные.

Кроме классификации реакций по типу реагирующих частиц, в органической химии различают четыре вида реакций по принципу изменения состава молекул: присоединения, замещения, отщепления, или элиминирования (от англ. to eliminate - удалять, отщеплять), и перегруппировки. Так как присоединение и замещение могут происходить под действием всех трех типов реакционноспо-собных частиц, можно выделить несколько основных механизмов протекания реакций.

Кроме этого, мы рассмотрим реакции отщепления, или элиминирования, которые идут под воздействием нуклеофильных частиц - оснований.

1. Что такое гомолитический и гетеролитический разрывы ковалентной связи? Для каких механизмов образования ковалентной связи они характерны?

2. Что называют электрофилами и нуклеофилами? Приведите их примеры.

3. В чем различия между мезомерным и индуктивным эффектами? Как эти явления иллюстрируют положение теории строения органических соединений А. М. Бутлерова о взаимном влиянии атомов в молекулах органических веществ?

4. В свете представлений об индуктивном и мезомерном эффектах рассмотрите взаимное влияние атомов в молекулах:

Подтвердите свои выводы примерами уравнений химических реакций.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Реакции органических веществ можно формально разделить на четыре основных типа: замещения, при­соединения, отщепления (эли­минирования) и перегруппировки (изомеризации).

Оче­видно, что все многообразие реакций органических соеди­нений невозможно свести к предложенной классифика­ции (например, реакции горе­ния). Однако такая классификация поможет устано­вить аналогии с уже знакомыми вам реакциями, протекающими между неорганическими веществами.

Как правило, основное органическое соедине­ние, участвующее в реакции, называют субстратом , а другой компонент реакции условно рассматрива­ют как реагент .

Реакции замещения

Реакции замещения - это реакции, в резуль­тате которых осуществляется замена одного атома или группы атомов в исходной молекуле (субстра­те) на другие атомы или группы атомов.

В реакции замещения вступают предельные и ароматические соединения, такие как алканы, циклоалканы или арены. Приведем примеры та­ких реакций.

Под действием света атомы водорода в молеку­ле метана способны замещаться на атомы галоге­на, например, на атомы хлора:

Другим примером замещения водорода на гало­ген является превращение бензола в бромбензол:

Уравнение этой реакции может быть записано иначе:

При этой форме записи реагенты , катализа­тор , условия проведения реакции записывают над стрелкой, а неорганические продукты реакции - под ней.

Реакции присоединения

Реакции присоединения - это реакции, в результате ко­торых две или более молекул реагирующих веществ соеди­няются в одну.

В реакции присоединения вступают ненасыщенные со­единения, такие как алкены или алкины. В зависимости от того, какая молекула выступает в качестве ре­агента, различают гидрирование (или восстановление), галогенирование, гидрогалогенирование, гидратацию и другие реакции присоединения. Каждая из них требует определенных условий.

1. Гидрирование - реакция присоединения мо­лекулы водорода по кратной связи:

2. Гидрогалогенирование - реакция присоеди­нения галогенводорода (гидрохлорирование):

3. Галогенирование - реакция присоединения галогена:

4. Полимеризация - особый тип реакций присо­единения, в ходе которых молекулы вещества с не­большой молекулярной массой соединяются друг с другом с образованием молекул вещества с очень высокой молекулярной массой - макромолекул.

Реакции полимеризации - это процессы сое­динения множества молекул низкомолекулярного вещества (мономера) в крупные молекулы (макро­молекулы) полимера.

Примером реакции полимеризации может слу­жить получение полиэтилена из этилена (этена) под действием ультрафиолетового излучения и ра­дикального инициатора полимеразации R .

Наиболее характерная для органических соеди­нений ковалентная связь образуется при перекры­вании атомных орбиталей и образовании общих электронных пар. В результате этого образуется общая для двух атомов орбиталь, на которой нахо­дится общая электронная пара. При разрыве связи судьба этих общих электронов может быть разной.

Типы реакционноспособных частиц в органической химии

Орбиталь с неспаренным электроном, принад­лежащая одному атому, может перекрываться с орбиталью другого атома, на которой также на­ходится неспаренный электрон. При этом происхо­дит образование ковалентной связи по обменному механизму :

Обменный механизм образования ковалентной связи реализуется в том случае, если общая элек­тронная пара образуется из неспаренных электро­нов, принадлежащих разным атомам.

Процессом, противоположным образованию ко­валентной связи по обменному механизму, явля­ется разрыв связи , при котором к каждому атому отходит по одному электрону. В результате этого образуются две незаряженные частицы, имеющие неспаренные электроны:

Такие частицы называются свободными ради­калами .

Свободные радикалы - атомы или группы ато­мов, имеющие неспаренные электроны.

Свободнорадикальные реакции - это реакции, которые протекают под действием и при участии свободных радикалов.

В курсе неорганической химии это реакции взаимодействия водорода с кислородом, галогена­ми, реакции горения. Реакции этого типа отлича­ются высокой скоростью, выделением большого количества тепла.

Ковалентная связь может образоваться и по донорно-акцепторному механизму . Одна из орби­талей атома (или аниона), на которой находится неподеленная электронная пара, перекрывается с незаполненной орбиталью другого атома (или ка­тиона), имеющего незаполненную орбиталь, при этом формируется ковалентная связь , например:

Разрыв ковалентной связи приводит к образо­ванию положительно и отрицательно заряженных частиц; так как в данном случае оба электрона из общей электронной пары остаются при одном из атомов, у другого атома получается незаполненная орбиталь:

Рассмотрим электролитическую диссоциацию кислот :

Можно легко догадаться, что частица, имею­щая неподеленную электронную пару R: — , т. е. от­рицательно заряженный ион, будет притягиваться к положительно заряженным атомам или к ато­мам, на которых существует по крайней мере ча­стичный или эффективный положительный заряд. Частицы с неподеленными электронными парами называют нуклеофильными агентами (nucleus - «ядро», положительно заряженная часть атома), т. е. «друзьями» ядра, положительного заряда.

Нуклеофилы (Nu) - анионы или молекулы, имеющие неподеленную пару электронов, взаимо­действующие с участками молекул, на которых со­средоточен эффективный положительный заряд.

Примеры нуклеофилов: Cl — (хлорид-ион), ОН — (ги­дроксид-анион), СН 3 О — (метоксид-анион), СН 3 СОО — (ацетат-анион).

Частицы, имеющие незаполненную орбиталь , напротив, будут стремиться заполнить ее и, следо­вательно, будут притягиваться к участкам молекул, на которых присутствует повышенная электронная плотность, отрицательный заряд, неподеленная электронная пара. Они являются электрофилами , «друзьями» электрона, отрицательного заряда или частиц с повышенной электронной плотностью.

Электрофилы - катионы или молекулы, име­ющие незаполненную электронную орбиталь, стре­мящиеся к заполнению ее электронами, так как это приводит к более выгодной электронной конфигу­рации атома.

Электрофилом с незаполненной орбиталью яв­ляется не любая частица. Так, например, катионы щелочных металлов имеют конфигурацию инерт­ных газов и не стремятся к приобретению электро­нов, так как имеют низкое сродство к электрону. Из этого можно сделать вывод, что несмотря на наличие у них незаполненной орбитали, подобные частицы не будут являться электрофилами.

Основные механизмы протекания реакций

Выделено три основных типа реагирующих ча­стиц - свободные радикалы, электрофилы, нукле­офилы - и три соответствующих им типа меха­низма реакций:

Свободнорадикальные;

Электрофильные;

Нулеофильные.

Кроме классификации реакций по типу реаги­рующих частиц, в органической химии различают четыре вида реакций по принципу изменения соста­ва молекул: присоединения , замещения , отщепле­ния , или элиминирования (от англ. to eliminate - удалять, отщеплять) и перегруппировки . Так как присоединение и замещение могут происходить под действием всех трех типов реакционноспособ­ных частиц, можно выделить несколько основных механизмов протекания реакций.

1. Свободнорадикальное замещение:

2. Свободнорадикальное присоединение:

3. Электрофильное замещение:

4. Электрофильное присоединение:

5. Нуклеофильное присоединение:

Кроме того, рассмотрим реакции отщепления, или элиминирования, которые идут под воздей­ствием нуклеофильных частиц - оснований.

6. Элиминирование:

Правило В. В. Марковникова

Отличительной чертой алкенов (непредельных углеводородов) является способность вступать в реакции присоединения. Большинство этих ре­акций протекает по механизму электрофильного присоединения.

Гидрогалогенирование (присоединение галоген­водорода):

Эта реакция подчиняется правилу В. В. Марков­никова.

При присоединении галогенводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором нахо­дится больше атомов водорода, а галоген - к ме­нее гидрированному.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Приложение 1
МЕХАНИЗМЫ РЕАКЦИЙ В ОРГАНИЧЕСКОЙ ХИМИИ
Н.В.Свириденкова, НИТУ «МИСиС», Москва
ЗАЧЕМ ИЗУЧАТЬ МЕХАНИЗМЫ ХИМИЧЕСКИХ РЕАКЦИЙ?
Что такое механизм химической реакции? Для ответа на этот вопрос рассмотрим уравнение реакции сжигания бутена:

C 4 H 8 + 6O 2 = 4CO 2 + 4H 2 O.

Если бы реакция в действительности протекала так, как это описано в уравнении, то одна молекула бутена должна была бы столкнуться одновременно сразу с шестью молекулами кислорода. Однако вряд ли это происходит: известно, что одновременное столкновение более чем трех частиц практически невероятно. Напрашивается вывод о том, что данная реакция, как и абсолютное большинство химических реакций, протекает в несколько последовательных стадий. Уравнение реакции показывает лишь исходные вещества и конечный результат всех превращений, и никак не объясняет, как образуются продукты из исходных веществ. Для того чтобы узнать, как именно протекает реакция, какие стадии она включает, какие промежуточные продукты образуются, необходимо рассмотреть механизм реакции.

Итак, механизм реакции – это детальное описание хода реакции по стадиям, которое показывает, в каком порядке и как разрываются химические связи в реагирующих молекулах и образуются новые связи и молекулы.

Рассмотрение механизма дает возможность объяснить, почему некоторые реакции сопровождаются образованием нескольких продуктов, а в других реакциях образуется только одно вещество. Знание механизма позволяет химикам предсказывать продукты химических реакций до того, как их провели на практике. Наконец, зная механизм реакции, можно управлять ходом реакции: создавать условия для увеличения ее скорости и повышения выхода нужного продукта.
ОСНОВНЫЕ ПОНЯТИЯ: ЭЛЕКТРОФИЛ, НУКЛЕОФИЛ, КАРБОКАТИОН
В органической химии реагенты традиционно делят на три типа: нуклеофильные , электрофильные и радикальные . С радикалами вы уже встречались ранее при изучении реакций галогенирования алканов. Рассмотрим более подробно другие типы реагентов.

Нуклеофильные реагенты или просто нуклеофилы (в переводе с греческого «любители ядер») – это частицы, обладающие избытком электронной плотности, чаще всего отрицательно заряженные или имеющие неподеленную электронную пару. Нуклеофилы атакуют молекулы с низкой электронной плотностью или положительно заряженные реагенты. Примерами нуклеофилов являются ионы ОН - , Br - , молекулы NH 3 .

Электрофильные реагенты или электрофилы (в переводе с греческого «любители электронов») – это частицы с недостатком электронной плотности. Часто электрофилы несут положительный заряд. Электрофилы атакуют молекулы с высокой электронной плотностью или отрицательно заряженные реагенты. Примеры электрофилов – Н + , NО 2 + .

В качестве электрофила может выступать также несущий частичный положительный заряд атом полярной молекулы. Примером может служить атом водорода в молекуле HBr, на котором возникает частичный положительный заряд из-за смещения общей электронной пары связи к атому брома, имеющему большее значение электроотрицательности H δ + → Br δ - .

Реакции, протекающие по ионному механизму, часто сопровождаются образованием карбокатионов. Карбокатионом называют заряженную частицу, имеющую свободную р -орбиталь на атоме углерода. Один из атомов углерода в карбокатионе несет на себе положительный заряд. Примерами карбокатионов могут служить частицы СН 3 -СН 2 + , CH 3 -CH + -CH 3 . Карбокатионы образуются на одной из стадий в реакциях присоединения к алкенам галогенов и галогеноводородов к алкенам, а также в реакциях замещения с участием ароматических углеводородов.
МЕХАНИЗМ ПРИСОЕДИНЕНИЯ К НЕПРЕДЕЛЬНЫМ УГЛЕВОДОРОДАМ

Присоединение галогенов, галогеноводородов, воды к непредельным углеводородам (алкенам, алкинам, диеновым углеводородам) протекает по ионному механизму , называемому электрофильным присоединением.

Рассмотрим этот механизм на примере реакции присоединения бромоводорода к молекуле этилена.

Несмотря на то, что реакция гидробромирования описывается очень простым равнением, ее механизм включает несколько стадий.

Стадия 1. На первой стадии молекула галогеноводорода образует с π -электронным облаком двойной связи неустойчивую систему – «π -комплекс» за счет частичной передачи π -электронной плотности на атом водорода, несущий частичный положительный заряд.


Стадия 2. Связь водород-галоген разрывается с образованием электрофильной частицы Н + , и нуклеофильной частицы Br - . Освободившийся электрофил Н + присоединяется к алкену за счет электронной пары двойной связи, образуя σ -комплекс – карбокатион.

Стадия 3. На этой стадии к положительно заряженному карбокатиону присоединяется отрицательно заряженный нуклеофил с образованием конечного продукта реакции.


ПОЧЕМУ ВЫПОЛНЯЕТСЯ ПРАВИЛО МАРКОВНИКОВА?
Предложенный механизм хорошо объясняет образование преимущественно одного из продуктов в случае присоединения галогеноводородов к несимметричным алкенам. Напомним, что присоединение галогеноводородов подчиняется правилу Марковникова, согласно которому водород присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода (т.е. связанному с наибольшим числом атомов водорода), а галоген к наименее гидрогенизированному. Например, при присоединении бромоводорода к пропену преимущественно образуется 2-бромпропан:

В реакциях электрофильного присоединения к несимметричным алкенам на второй стадии реакции может образоваться два карбокатиона. Далее реагировать с нуклеофилом, а значит, и определять продукт реакции будет более устойчивый из них.

Рассмотрим, какие карбокатионы образуются в случае пропена, и сравним их устойчивость. Присоединение протона Н + по месту двойной связи может приводить к образованию двух карбокатионов вторичного и первичного:

Образующиеся частицы очень нестабильны, поскольку положительно заряженный атом углерода в составе карбокатиона имеет неустойчивую электронную конфигурацию. Такие частицы стабилизируются при распределении (делокализации) заряда по возможно большему числу атомов. Электронодонорные алкильные группы, подающие электронную плотность на электронодефицитный атом углерода, способствуют и стабилизируют карбокатионы. Рассмотрим, как это происходит.

Из-за различия электроотрицательностей атомов углерода и водорода на атоме углерода группы -СН 3 появляется некоторый избыток электронной плотности, а на атоме водорода – некоторый ее дефицит С δ- Н 3 δ+ . Наличие такой группы рядом с атомом углерода, несущим положительный заряд, неизбежно вызывает смещение электронной плотности в сторону положительного заряда. Таким образом, метильная группа выступает как донор, отдавая часть своей электронной плотности. Про такую группу говорят, что она обладает положительным индуктивным эффектом (+ I -эффектом) . Чем большим количеством таких электронодонорных (+ I ) - заместителей окружен углерод, несущий положительный заряд, тем более устойчив соответствующий карбокатион. Таким образом, стабильность карбокатионов возрастает в ряду:

В случае пропена наиболее устойчивым является вторичный карбокатион, так как в нем положительно заряженный атом углерода карбокатиона стабилизирован двумя + I - эффектами соседних метильных групп. Преимущественно образуется и реагирует дальше именно он. Неустойчивый первичный карбокатион, по-видимому, существует очень короткое время, так что за время своей «жизни» не успевает присоединить нуклеофил и образовать продукт реакции.



При присоединении на последней стадии бромид-иона к вторичному карбокатиону и образуется 2-бромпропан:

ВСЕГДА ЛИ ВЫПОЛНЯЕТСЯ ПРАВИЛО МАРКОВНИКОВА?

Рассмотрение механизма реакции гидробромирования пропилена позволяет сформулировать общее правило электрофильного присоединения: «при взаимодействии несимметричных алкенов с электрофильными реагентами реакция протекает через образование наиболее стабильного карбокатиона». Это же правило позволяет объяснить образование в некоторых случаях продуктов присоединения вопреки правилу Марковникова. Так, присоединение галогеноводородов к трифторпропилену формально протекает против правила Марковникова:

Как может получиться такой продукт, ведь он образовался в результате присоединения Br - к первичному, а не ко вторичному карбокатиону? Противоречие легко устраняется при рассмотрении механизма реакции и сравнении стабильности промежуточно образующихся частиц:

Группа -СF 3 содержит три электроноакцепторных атома фтора, стягивающих электронную плотность от атома углерода. Поэтому на атоме углерода появляется существенный недостаток электронной плотности. Для компенсации возникающего частичного положительного заряда атом углерода стягивает на себя электронную плотность соседних углеродных атомов. Таким образом, группа -СF 3 является электроноакцепторной и проявляет отрицательный индуктивный эффект (- I ) . Более устойчивым в этом случае оказывается первичный карбокатион, так как дестабилизирующее влияние группы -CF 3 через две σ-связи ослабевает. А вторичный карбокатион, дестабилизированный соседней электроноакцепторной группой CF 3 , практически не образуется.

Аналогичное влияние на присоединение оказывает присутствие при двойной связи электроноакцепторных групп –NO 2 , -COOH, -COH и т.д. В этом случае также образуется продукт присоединения формально против правила Марковникова. Например, при присоединении хлороводорода к пропеновой (акриловой) кислоте образуется преимущественно 3-хлорпропановая кислота:

Таким образом, направление присоединения к непредельным углеводородам легко установить, анализируя строение углеводорода. Кратко это можно отразить следующей схемой:


Следует отметить, что правило Марковникова выполняется только в том случае, если реакция идет по ионному механизму. При проведении радикальных реакций правило Марковникова не выполняется. Так, присоединение бромоводорода HBr в присутствии пероксидов (H 2 O 2 или органических пероксидов) протекает против правила Марковникова:


Добавление пероксидов меняют механизм реакции, он становится радикальным. На этом примере видно, как важно знать механизм реакции и условия, в которых он реализуется. Тогда, выбрав соответствующие условия проведения реакции, можно направить ее по нужному в данном конкретном случае механизму, и получить именно те продукты, которые нужны.
МЕХАНИЗМ ЗАМЕЩЕНИЯ АТОМОВ ВОДОРОДА В АРОМАТИЧЕСКИХ УГЛЕВОДОРОДАХ
Наличие в молекуле бензола устойчивой сопряженной π -электронной системы делает реакции присоединения практически невозможными. Для бензола и его производных наиболее характерны реакции замещения атомов водорода, протекающие с сохранением ароматичности. При этом бензольное ядро, содержащее π- электроны, взаимодействует с электрофильными частицами. Такие реакции называют реакциями электрофильного замещения в ароматическом ряду . К ним относятся, например, галогенирование, нитрование и алкилирование бензола и его производных.

Все реакции электрофильного замещения в ароматических углеводородах протекают по одному и тому же ионному механизму независимо от характера реагента. Механизм реакций замещения включает несколько стадий: образование электрофильного агента Е + , образование π -комплекса, затем σ- комплекса и, наконец, распад σ- комплекса с образованием продукта замещения.

Электрофильная частица Е + образуется при взаимодействии реагента с катализатором, например, при действии на молекулу галогена хлоридом алюминия. Образующаяся частица Е + взаимодействует с ароматическим ядром, образуя сначала π -, а затем σ- комплекс:

При образовании σ- комплекса электрофильная частица Е + присоединяется к одному из атомов углерода бензольного кольца посредством σ- связи. В образовавшемся карбокатионе положительный заряд равномерно распределен (делокализован) между оставшимися пятью атомами углерода.

Реакция заканчивается отщеплением протона от σ- комплекса. При этом два электрона σ -связи С-Н возвращаются в цикл, и устойчивая шестиэлектронная ароматическая π -система регенирируется.

В молекуле бензола все шесть атомов углерода равноценны. Замещение атома водорода может происходить с равной вероятностью при любом из них. А как будет происходить замещение в случае гомологов бензола? Рассмотрим в качестве примера метилбензол (толуол).

Из экспериментальных данных известно, что электрофильное замещение в случае толуола всегда протекает с образованием двух продуктов. Так, нитрование толуола протекает с образованием п -нитротолуола и о -нитротолуола:

Аналогично протекают и другие реакции электрофильного замещения (бромирование, алкилирование). Также было установлено, что в случае толуола реакции замещения протекают быстрее и в более мягких условиях, чем в случае бензола.

Объяснить эти факты очень просто. Метильная группа является электронодонорной и вследствие этого дополнительно увеличивает электронную плотность бензольного кольца. Особенно сильное увеличение электронной плотности происходит в о- и п- положениях по отношению к группе -СН 3 , что облегчает присоединение именно в эти места положительно заряженной электрофильной частицы. Поэтому скорость реакции замещения в целом увеличивается, а заместитель направляется преимущественно в орто - и пара -положения.

© nvuti-info.ru, 2024
Новости бизнеса, дизайна, красоты, строительства, финансов