Кислород в земной коре в виде. Кислород в недрах земли

22.07.2020

Лекция «Кислород – химический элемент и простое вещество »

План лекции:

1. Кислород – химический элемент:

в) Распространённость химического элемента в природе

2. Кислород – простое вещество

а) Получение кислорода

б) Химические свойства кислорода

в) Круговорот кислорода в природе

г) Применение кислорода

«Dum spiro spero » (Пока дышу, надеюсь...), - гласит латынь

Дыхание – это синоним жизни, а источник жизни на Земле – кислород.

Подчёркивая важность кислорода для земных процессов, Яков Берцелиус сказал: « Кислород – это вещество, вокруг которого вращается земная химия»

Материал данной лекции обобщает ранее полученные знания по теме «Кислород».

1. Кислород – химический элемент

а) Характеристика химического элемента – кислорода по его положению в ПСХЭ


Кислород - элемент главной подгруппы шестой группы, второго периода периодической системы химических элементов Д. И. Менделеева, с атомным порядковым номером 8. Обозначается символом O (лат. Oxygenium ). Относительная атомная масса химического элемента кислорода равна 16, т.е. Ar (O )=16.

б) Валентные возможности атома кислорода

В соединениях кислород обычно двухвалентен (в оксидах), валентность VI не существует.В свободном виде встречается в виде двух простых веществ: О 2 («обычный» кислород) и О 3 (озон). О 2 - газ без цвета и запаха, с относительной молекулярной массой =32. О 3 – газ без цвета с резким запахом, с относительной молекулярной массой =48.

Внимание! H 2 O 2 (перекись водорода) – O (валентность II)

СО (угарный газ) – О (валентность III)

в) Распространённость химического элемента кислорода в природе

Кислород - самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 49% массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 85,5% (по массе), в атмосфере содержание свободного кислорода составляет 21% по объёму и 23% по массе. Более 1500 соединений земной коры в своем составе содержат кислород.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 20 %, по массовой доле - около 65 %.

2. Кислород – простое вещество

а) Получение кислорода

Получение в лаборатории

1) Разложение перманганата калия (марганцовка):

2KMnO 4 t˚C =K 2 MnO 4 +MnO 2 +O 2

2) Разложение перекиси водорода:

2H 2 O 2 MnO2 =2H 2 O + O 2

3) Разложение бертолетовой соли:

2KClO 3 t˚C , MnO2 =2KCl + 3O 2

Получение в промышленности

1) Электролиз воды

2 H 2 O эл . ток =2 H 2 + O 2

2) Из воздуха

ВОЗДУХ давление, -183˚ C = O 2 (голубая жидкость)

В настоящее время в промышленности кислород получают из воздуха. В лабораториях небольшие количества кислорода можно получать нагреванием перманганата калия (марганцовка) KMnO 4 . Кислород мало растворим в воде и тяжелее воздуха, поэтому его можно получать двумя способами:

Среди всех веществ на Земле особое место занимает то, что обеспечивает жизнь, - газ кислород. Именно его наличие делает нашу планету уникальной среди всех других, особенной. Благодаря этому веществу в мире живет столько прекрасных созданий: растения, животные, люди. Кислород - это совершенно незаменимое, уникальное и чрезвычайно важное соединение. Поэтому постараемся узнать, что он собой представляет, какими характеристиками обладает.

Особенно часто применяется первый метод. Ведь из воздуха можно выделить очень много этого газа. Однако он будет не совсем чистым. Если же необходим продукт более высокого качества, тогда в ход пускают электролизные процессы. Сырьем для этого является либо вода, либо щелочь. Гидроксид натрия или калия используют для того, чтобы увеличить силу электропроводности раствора. В целом же суть процесса сводится к разложению воды.

Получение в лаборатории

Среди лабораторных методов широкое распространение получил метод термической обработки:

  • пероксидов;
  • солей кислородсодержащих кислот.

При высоких температурах они разлагаются с выделением газообразного кислорода. Катализируют процесс чаще всего оксидом марганца (IV). Собирают кислород вытеснением воды, а обнаруживают - тлеющей лучинкой. Как известно, в атмосфере кислорода пламя разгорается очень ярко.

Еще одно вещество, используемое для получения кислорода на школьных уроках химии, - перекись водорода. Даже 3 % раствор под действием катализатора мгновенно разлагается с высвобождением чистого газа. Его нужно лишь успеть собрать. Катализатор тот же - оксид марганца MnO 2 .

Среди солей чаще всего используются:

  • бертолетова соль, или хлорат калия;
  • перманганат калия, или марганцовка.

Чтобы описать процесс, можно привести уравнение. Кислорода выделяется достаточно для лабораторных и исследовательских нужд:

2KClO 3 = 2KCl + 3O 2 .

Аллотропные модификации кислорода

Существует одна аллотропная модификация, которую имеет кислород. Формула этого соединения О 3 , называется оно озоном. Это газ, который образуется в природных условиях при воздействии ультрафиолета и грозовых разрядов на кислород воздуха. В отличие от самого О 2 , озон имеет приятный запах свежести, который ощущается в воздухе после дождя с молнией и громом.

Отличие кислорода и озона заключается не только в количестве атомов в молекуле, но и в строении кристаллической решетки. В химическом отношении озон - еще более сильный окислитель.

Кислород - это компонент воздуха

Распространение оксигена в природе очень широко. Кислород встречается в:

  • горных породах и минералах;
  • воде соленой и пресной;
  • почве;
  • растительных и животных организмах;
  • воздухе, включая верхние слои атмосферы.

Очевидно, что им заняты все оболочки Земли - литосфера, гидросфера, атмосфера и биосфера. Особенно важным является содержание его в составе воздуха. Ведь именно этот фактор позволяет существовать на нашей планете жизненным формам, в том числе и человеку.

Состав воздуха, которым мы дышим, чрезвычайно неоднороден. Он включает в себя как постоянные компоненты, так и переменные. К неизменным и всегда присутствующим относятся:

  • углекислый газ;
  • кислород;
  • азот;
  • благородные газы.

К переменным можно отнести пары воды, частицы пыли, посторонние газы (выхлопные, продукты горения, гниения и прочие), растительная пыльца, бактерии, грибки и прочие.

Значение кислорода в природе

Очень важно, сколько кислорода содержится в природе. Ведь известно, что на некоторых спутниках больших планет (Юпитер, Сатурн) были обнаружены следовые количества этого газа, однако очевидной жизни там нет. Наша Земля имеет достаточное его количество, которое в сочетании с водой дает возможность существовать всем живым организмам.

Помимо того, что он является активным участником дыхания, кислород еще проводит бесчисленное количество реакций окисления, в результате которых высвобождается энергия для жизни.

Основными поставщиками этого уникального газа в природе являются зеленые растения и некоторые виды бактерий. Благодаря им поддерживается постоянный баланс кислорода и углекислого газа. Кроме того, озон выстраивает защитный экран над всей Землей, который не позволяет проникать большому количеству уничтожающего ультрафиолетового излучения.

Лишь некоторые виды анаэробных организмов (бактерии, грибки) способны жить вне атмосферы кислорода. Однако их гораздо меньше, чем тех, кто очень в нем нуждается.

Использование кислорода и озона в промышленности

Основные области использования аллотропных модификаций кислорода в промышленности следующие.

  1. Металлургия (для сварки и вырезки металлов).
  2. Медицина.
  3. Сельское хозяйство.
  4. В качестве ракетного топлива.
  5. Синтез многих химических соединений, в том числе взрывчатых веществ.
  6. Очищение и обеззараживание воды.

Сложно назвать хотя бы один процесс, в котором не принимает участие этот великий газ, уникальное вещество - кислород.

С момента появления химии человечеству стало понятно, что все вокруг состоит из вещества, в состав которого входят химические элементы. Многообразие веществ обеспечивается различными соединениями простых элементов. На сегодня открыто и внесено в периодическую таблицу Д. Менделеева 118 химических элементов. Среди них стоит выделить ряд ведущих, наличие которых определило появление органической жизни на Земле. В этот перечень входят: азот, углерод, кислород, водород, сера и фосфор.

Кислород: история открытия

Все эти элементы, а также ряд других, способствовали развитию эволюции жизни на нашей планете в том виде, в котором мы сейчас наблюдаем. Среди всех компонентов именно кислорода в природе больше остальных элементов.

Кислород как отдельный элемент был открыт 1 августа 1774 года В ходе эксперимента по получению воздуха из окалины ртути путём нагревания при помощи обычной линзы он обнаружил, что свеча горит необычно ярким пламенем.

Долгое время Пристли пытался найти этому разумное объяснение. На тот момент этому явлению было дано название «второй воздух». Несколько ранее изобретатель подводной лодки К. Дреббель в начале XVII века выделил кислород и использовал его для дыхания в своём изобретении. Но его опыты не оказали влияния на понимание того, какую роль играет кислород в природе энергообмена живых организмов. Однако учёным, официально открывшим кислород, признан французский химик Антуан Лоран Лавуазье. Он повторил эксперимент Пристли и понял, что образующийся газ является отдельным элементом.

Кислород взаимодействует практически со всеми простыми и кроме инертных газов и благородных металлов.

Нахождение кислорода в природе

Среди всех элементов нашей планеты наибольшую долю занимает кислород. Распространение кислорода в природе весьма разнообразно. Он присутствует как в связанном виде, так и в свободном. Как правило, являясь сильным окислителем, он пребывает в связанном состоянии. Нахождение кислорода в природе как отдельного несвязанного элемента зафиксировано только в атмосфере планеты.

Содержится в виде газа и представляет собой соединение двух атомов кислорода. Составляет около 21 % от общего объёма атмосферы.

Кислород в воздухе, кроме обычной своей формы, имеет изотропную форму в виде озона. состоит из трёх атомов кислорода. Голубой цвет неба непосредственно связан с наличием этого соединения в верхних слоях атмосферы. Благодаря озону, жёсткое коротковолновое излучение от нашего Солнца поглощается и не попадает на поверхность.

В случае отсутствия озонового слоя органическая жизнь была бы уничтожена, подобно поджаренной еде в микроволновой печи.

В гидросфере нашей планеты этот элемент находится в связанном виде с двумя и образует воду. Доля содержания кислорода в океанах, морях, реках и подземных водах оценивается около 86- 89 %, с учётом растворенных солей.

В земной коре кислород находится в связанном виде и является наиболее распространённым элементом. Его доля составляет около 47 %. Нахождение кислорода в природе не ограничивается оболочками планеты, этот элемент входит в состав всех органических существ. Его доля в среднем достигает 67 % от общей массы всех элементов.

Кислород - основа жизни

Из-за высокой окислительной активности кислород достаточно легко соединяется с большинством элементов и веществ, образуя оксиды. Высокая окислительная способность элемента обеспечивает всем известный процесс горения. Кислород также участвует в процессах медленного окисления.

Роль кислорода в природе как сильного окислителя незаменима в процессе жизнедеятельности живых организмов. Благодаря этому химическому процессу происходит окисление веществ с выделением энергии. Её живые организмы используют для своей жизнедеятельности.

Растения - источник кислорода в атмосфере

На начальном этапе образования атмосферы на нашей планете существующий кислород находился в связанном состоянии, в виде двуокиси углерода (углекислый газ). Со временем появились растения, способные поглощать углекислый газ.

Данный процесс стал возможен благодаря возникновению фотосинтеза. Со временем, в ходе жизнедеятельности растений, за миллионы лет в атмосфере Земли накопилось большое количество свободного кислорода.

По мнению учёных, в прошлом его массовая доля достигала порядка 30 %, в полтора раза больше, чем сейчас. Растения, как в прошлом, так и сейчас, существенно повлияли на круговорот кислорода в природе, обеспечив тем самым разнообразную флору и фауну нашей планеты.

Значение кислорода в природе не просто огромно, а первостепенно. Система метаболизма животного мира чётко опирается на наличие кислорода в атмосфере. При его отсутствии жизнь становится невозможной в том виде, в котором мы знаем. Среди обитателей планеты останутся только анаэробные (способные жить без наличия кислорода) организмы.

Интенсивный в природе обеспечен тем, что он находится в трёх агрегатных состояниях в объединении с другими элементами. Будучи сильным окислителем, он очень легко переходит из свободной формы в связанную. И только благодаря растениям, которые путём фотосинтеза расщепляют углекислый газ, он имеется в свободной форме.

Процесс дыхания животных и насекомых основан на получении несвязанного кислорода для окислительно-восстановительных реакций с последующим получением энергии для обеспечения жизнедеятельности организма. Нахождение кислорода в природе, связанного и свободного, обеспечивает полноценную жизнедеятельность всего живого на планете.

Эволюция и «химия» планеты

Эволюция жизни на планете опиралась на особенности состава атмосферы Земли, состава минералов и наличия воды в жидком состоянии.

Химический состав коры, атмосферы и наличие воды стали основой зарождения жизни на планете и определили направление эволюции живых организмов.

Опираясь на имеющуюся «химию» планеты, эволюция пришла к углеродной органической жизни на основе воды как растворителя химических веществ, а также использовании кислорода как окислителя с целью получения энергии.

Иная эволюция

На данном этапе современная наука не опровергает возможность жизни в иных средах, отличных от земных условий, где за основу построения органической молекулы может быть взят кремний или мышьяк. А среда жидкости, как растворителя, может представлять собой смесь жидкого аммиака с гелием. Что касается атмосферы, то она может быть представлена в виде газообразного водорода с примесью гелия и других газов.

Какие метаболические процессы могут быть при таких условиях, современная наука пока не в состоянии смоделировать. Однако такое направление эволюции жизни вполне допустимо. Как доказывает время, человечество постоянно сталкивается с расширением границ нашего понимания окружающего мира и жизни в нем.

КИСЛОРОД, О (а. oxygen; и. Sauerstoff; ф. oxygene; и. oxigeno), — химический элемент VI группы периодической системы Менделеева , атомный номер 8, атомная масса 15,9994. В природе состоит из трёх стабильных изотопов: 16 О (99,754%), 17 О (0,0374%), 18 О (0,2039%). Открыт независимо шведским химиком К. В. Шееле (1770) и английским исследователем Дж. Пристли (1774). В 1775 французский химик А. Лавуазье нашёл, что воздух состоит из двух газов — кислорода и азота и дал первому название.

Более 99,9% кислорода Земли находится в связанном состоянии. Кислород — главный фактор, регулирующий распределение элементов в планетарном масштабе . Содержание его с глубиной закономерно уменьшается. Количество кислорода в магматических породах меняется от 49% в кислых эффузивах и до 38-42% в дунитах и кимберлитах . Содержание кислорода в метаморфических породах соответствует глубинности их формирования: от 44% в эклогитах до 48% в кристаллических сланцах . Максимум кислорода в осадочных породах 49-51%. При погружении осадков происходит их дегидратация и частичное восстановление оксидного железа , сопровождающиеся уменьшением количества кислорода в породе. При подъёме горных пород из глубин в приповерхностные условия начинаются процессы их изменения с привносом воды и углекислоты и содержание кислорода повышается. Исключительную роль в геохимических процессах играет свободный кислород, значение которого определяется его высокой химической активностью, большой миграционной способностью и постоянным, относительно высоким содержанием в биосфере , где он не только расходуется, но и воспроизводится.

Свободный кислород

Полагают, что свободный кислород появился в протерозое в результате фотосинтеза. В гипергенных процессах кислород — один из основных агентов, он окисляет сероводород и низшие оксиды. Кислород определяет поведение многих элементов: повышает миграционную способность халькофилов, окисляя сульфиды до подвижных сульфатов, снижает подвижность железа и , осаждая их в виде гидроксидов и обусловливая этим их разделение, и т. д. В водах океана содержание кислорода меняется: летом океан отдаёт кислород в атмосферу, зимой поглощает его. Полярные регионы обогащены кислородом. Важное геохимическое значение имеют соединения кислорода — и углекислота.

Первичный изотопный состав кислорода Земли отвечал изотопному составу метеоритов и ультраосновных пород (18О = 5,9-6,4%). Процессы осадконакопления привели к фракционированию изотопов между осадками и водой и обеднению тяжёлым кислородом вод океана. Кислород атмосферы обеднён 18 О по сравнению с кислородом океана, принятым за стандарт. Щелочные породы, граниты, метаморфические и осадочные породы обогащаются тяжёлым кислородом. Вариации изотопного состава в земных объектах определяются в основном температурой протекания процесса. На этом основана изотопная термометрия карбонатообразования и других геохимических процессов.

Получение кислорода

Основной промышленный метод получения кислорода — разделение воздуха методом глубокого охлаждения. Как побочный продукт кислород получают при электролизе воды. Разработан способ получения кислорода методом избирательной диффузии газов через молекулярные сита.

Газообразный кислород

Газообразный кислород применяется в металлургии для интенсификации доменных и сталеплавильных процессов, при выплавке цветных металлов в печах , бессемеровании штейнов и др. (свыше 60% потребляемого кислорода); как окислитель во многих химических производствах; в технике — при сварке и резке металлов; при подземной газификации угля и др.; озон — при стерилизации пищевой воды и дезинфекции помещений. Жидкий кислород используют как окислитель для ракетных топлив.

Можно вполне оценить планетное значение явлений жизни, в частности дыхания, обратив внимание на историю свободного кислорода в земной коре, одного из бесчисленных химических тел, вносимых живым веществом в биосферу.

Свободный кислород в молекулах О 2 , как мы знаем, в форме газа и еще больше в водных растворах играет совершенно исключительную роль во всех химических реакциях земной поверхности. Можно сказать, что он своим присутствием меняет весь их ход. Количество непрерывно существующих в земной коре молекул О 2 огромно. Можно определить его с достаточной точностью. В атмосфере - в тропосфере и в нижней стратосфере - вес свободного кислорода, молекул О 2 , по С. Аррениусу, соответствует минимально 1,2∙10 15 т, максимально 2,1∙10 15 т. Эта масса в сотни тысяч раз превышает общие массы в земной коре целого ряда многочисленных химических элементов земной коры. Атмосфера далеко не содержит всего свободного кислорода. Очень значительная часть его находится в растворе в водах и прежде всего в той массе соленой воды, которая образует Мировой океан. Все же эта часть меньше, чем вся масса свободного кислорода атмосферы и немногим превышает 1,5∙10 13 т.

Свободный кислород также растворен в пресной воде суши, растворен или окклюдирован в снегах и во льдах. Но это количество меньше растворенного кислорода гидросферы, так как весь объем пресной воды, по В. Гальбфассу, составляет лишь 3,6∙10 -1 % объема соленой воды океана, даже включая сюда льды и снега, представляющие по весу своему господствующую часть воды суши. Так, по Гальбфассу, объем льдов соответствует 3,5-4 10 6 км 3 , объем воды океана - 1,3 10 9 км 3 (О. Крюммель), объем воды озер, болот, рек и надземных вод - 7,5 10 5 км 3 максимально. Таким образом, все количество свободного кислорода, даже считая свободный кислород, включенный в осадочные породы, немного превышает 1,5∙10 15 т, приблизительно составляя одну десятитысячную часть всего кислорода земной коры.

Мы знаем, что свободный кислород существует лишь на поверхности Земли. Вода глубоких источников, как это доказал уже в конце XVIII в. врач Д. Пирсон (1751 - 1828) в Англии, его не содержит. Газы вулканических и метаморфических пород почти свободны от него.

Количество свободного кислорода в биосфере, несомненно, одна из наиболее точно определенных физических постоянных нашей планеты. Оно определяет геохимическую работу живых организмов и позволяет понять ее значение в истории химических элементов.

Свободный кислород - самый могущественный деятель из всех нам известных химических тел земной коры. Он изменяет - окисляет - огромное количество химических соединений, он всегда находится в движении, все время вступает в соединения. Мы знаем тысячи химических реакций, которыми он захватывается, во время которых он входит в соединения. Среди них наиболее важны окисленные соединения металлоидов, таких, как сера и углерод (в том числе и соединения организмов), и соединения металлов - железа или марганца. История всех циклических элементов земной коры определяется их отношением к свободному кислороду. Недавние исследования указывают даже на его первостепенное влияние в вулканических явлениях. Кислород атмосферы, захваченный горящей лавой, дает окисленные продукты (например, воды, окислы серы и пр.), и тепло, освобожденное этими реакциями окисления, играет огромную роль в термических эффектах лав. Высокая температура лав достигается на поверхности под влиянием этих реакций окисления; лава, поднимающаяся из недр коры и еще не соприкасающаяся с кислородом воздуха, имеет температуру, часто на сотни градусов более низкую.

Несмотря на все значение, представляемое этими реакциями окисления для множества таких земных процессов, количество свободного кислорода планеты представляется неизменным или почти неизменным. Очевидно, должны существовать обратные процессы, должно идти освобождение свободного кислорода в окружающую среду взамен кислорода, постоянно удерживаемого в новых прочных соединениях. Мы знаем в биосфере одну-единственную реакцию такого рода, если будем принимать во внимание только реакции большого масштаба. Это реакция биохимическая, выделение свободного кислорода хлорофильными пластидами земных организмов. Эта реакция открыта в конце XVIII в. Д. Пристлеем, углублена трудами выдающихся ученых, его современников, освещена во всем ее значении, в ее всеобщности, в ее главных чертах женевским ученым Т. де Соссюром в начале прошлого века.

Несомненно, эта реакция образования свободного кислорода в земной коре не единственная, но, поскольку можно судить, она единственная, которая дает значительные массы свободного кислорода в составе атмосферы, облекающей нашу планету.

Выделение свободного кислорода вне влияния жизни доказано или же является в высшей степени вероятным в связи с процессами радиоактивного распада, разложения газов ультрафиолетовыми излучениями и процессами метаморфизма. Все эти процессы идут в значительной мере вне биосферы, может быть за исключением радиоактивного распада, и в ее явлениях - в создании тропосферы - едва ли участвуют.

В глубинах земной коры кислород должен выделяться, так как соединения, богатые кислородом, например сульфаты или тела, содержащие окись железа, образуемые на поверхности, превращаются в глубоких слоях коры в соединения, более бедные кислородом или его не содержащие.

Однако этот свободный кислород должен немедленно вступать в соединения; нигде мы не находим его проявления.

Если даже кислород подымается временами и местами из глубин земной коры, совершенно ясно, что эти возможные его выделения, указания на которые встречаются, ничтожны по массе - в биосфере - по сравнению с тем количеством кислорода, которое в ней выделяется биогенным путем.

Гораздо важнее могло бы быть выделение свободного кислорода в стратосфере и выше под влиянием ультрафиолетовых излучений в связи с разложением паров воды, может быть углекислоты. Эта область явлений еще менее изучена и учтена по сравнению даже с выделением кислорода в метаморфической оболочке. Однако два обстоятельства должны быть приняты во внимание, сильно уменьшающие геологическое значение этого явления: 1) малая масса разреженных газов в стратосфере и выше и 2) чрезвычайно заторможенный их обмен с тропосферой.

Наконец, третий фактор может быть учитываем: распад молекул воды под влиянием а -, отчасти β-излучений всюду находящихся атомов радиоактивных элементов. Существование этих явлений несомненно, но нигде концентрации таких атомов в природных водах не представляются столь большими, чтобы с ними пришлось считаться в пределах биосферы. К сожалению, это явление и экспериментально и наблюдением в природе изучено недостаточно.

Учитывая все это, можно сейчас утверждать, что свободный кислород тропосферы и поверхностной водной атмосферы (газов, растворенных в поверхностных природных водах), т. е. больше чем пятая часть массы тропосферы, есть создание жизни.

Но больше того, совершенно аналогичное явление наблюдается для свободного азота тропосферы, и будет правильным заключить - и это в дальнейшем учитывать, - что земная газовая оболочка, наш воздух, есть создание жизни.

В истории свободного кислорода мы получаем, таким образом, яркое мерило геологического и геохимического значения жизни.

— Источник—

Вернадский, В.И. Биосфера/ В.И. Вернадский. – М.: Мысль, 1967.– 374 с.

© nvuti-info.ru, 2024
Новости бизнеса, дизайна, красоты, строительства, финансов