Активное радиолокационное самонаведение. Головки самонаведения перспективных зарубежных управляемых ракет и авиабомб

02.05.2020

Создание систем высокоточного наведения на цель дальнобойных ракет класса «земля–земля» – одна из важнейших и сложных проблем при разработке высокоточного оружия (ВТО). Это обусловлено прежде всего тем, что при прочих равных условиях сухопутные цели имеют значительно меньшее соотношение «полезный сигнал/помеха» по сравнению с морскими и воздушными, а пуск и наведение ракеты осуществляются без непосредственного контакта оператора с целью.

В высокоточных ракетных комплексах дальнего огневого поражения класса «земля–земля», реализующих концепцию эффективного поражения наземных целей боевыми частями обычного снаряжения независимо от дальности стрельбы, для управления на конечном участке траектории системы инерциальной навигации комплексируются с системами самонаведения ракет, в которых используется принцип навигации по геофизическим полям Земли. Инерциальная навигационная система как базовая обеспечивает высокую помехозащищенность и автономность комплексированных систем. Это дает ряд неоспоримых преимуществ, в том числе в условиях непрерывного совершенствования систем противоракетной обороны.

Для комплексирования инерциальных систем управления с системами самонаведения по геофизическим полям Земли в первую очередь необходима специальная система информационного обеспечения.

Идеология и принципы системы информационного обеспечения определяются основными характеристиками объектов поражения и собственно комплексов вооружения. Функционально информационное обеспечение высокоточных ракетных комплексов включает в себя такие основные составляющие, как получение и дешифрование разведывательной информации, выработка целеуказания, доведение информации целеуказания до комплексов ракетного оружия.

Важнейшим элементом систем высокоточного наведения ракет являются головки самонаведения (ГСН). Одной из отечественных организаций, занимающейся разработками в данной области, является Центральный НИИ автоматики и гидравлики (ЦНИИАГ), расположенный в Москве. Там был накоплен большой опыт по разработке систем наведения ракет класса «земля–земля» с головками самонаведения оптического и радиолокационного типов с корреляционно-экстремальной обработкой сигналов.

Применение корреляционно-экстремальных систем самонаведения по картам геофизических полей путем сравнения значений геофизического поля, измеренного в полете, с заложенной в память бортовой ЭВМ его эталонной картой позволяет исключить ряд накопленных ошибок управления. Для систем самонаведения по оптическому изображению местности эталонной картой может служить оптический разведывательный снимок, на котором цель определяется практически без ошибок относительно элементов окружающего ландшафта. В силу этого ГСН, ориентирующаяся по элементам ландшафта, наводится именно в указанную точку независимо от того, с какой точностью известны ее географические координаты.

Появлению опытных образцов оптических и радиолокационных корреляционно-экстремальных систем и их ГСН предшествовал огромный объем теоретических и экспериментальных исследований в области информатики, теорий распознавания образов и обработки изображений, основ разработки аппаратного и программного обеспечения для текущих и эталонных изображений, организации банков фоно-целевой обстановки различных участков земной поверхности в различных диапазонах электромагнитного спектра, математического моделирования ГСН, вертолетных, самолетных и ракетных испытаний.

Конструкция одного из вариантов оптической ГСН приведена на рис. 1 .

Оптическая ГСН обеспечивает в полете распознавание участка ландшафта в районе цели по его оптическому изображению, сформированному объективом координатора на поверхности матричного многоэлементного фотоприемника. Каждый элемент приемника преобразует яркость соответствующего ему участка местности в электрический сигнал, который поступает на вход кодирующего устройства. Сформированный этим устройством бинарный код записывается в память ЭВМ. Здесь же хранится эталонное изображение искомого участка местности, полученное по фотоснимку и закодированное по тому же алгоритму. При сближении с целью ведется ступенчатое масштабирование путем вызова из памяти ЭВМ эталонных изображений соответствующего масштаба.

Распознавание участка местности производится в режимах захвата и сопровождения цели. В режиме сопровождения цели используется беспоисковый метод, основанный на алгоритмах теории распознавания образов.

Алгоритм работы оптической ГСН предоставляет возможность формировать сигналы управления как в режиме непосредственного наведения, так и в режиме экстраполяции углов наведения. Это позволяет не только повысить точность наведения ракеты на цель, но и обеспечить экстраполяцию сигналов управления в случае срыва сопровождения цели. Достоинство оптических ГСН – пассивный режим работы, высокая разрешающая способность, малые масса и габариты.

Радиолокационные ГСН обеспечивают высокую погодную, сезонную и ландшафтную надежность при существенном уменьшении инструментальных ошибок системы управления и целеуказания. Общий вид одного из вариантов радиолокационной ГСН приведен на рис. 2 .

Принцип действия радиолокационной ГСН основан на корреляционном сравнении текущего радиолокационного яркостного изображения местности в районе цели, получаемого на борту ракеты с помощью радиолокатора, с эталонными изображениями, синтезированными предварительно по первичным информационным материалам. В качестве первичных информационных материалов используются топографические карты, цифровые карты местности, аэрофотоснимки, космические снимки и каталог удельных эффективных поверхностей рассеяния, характеризующих отражательные радиолокационные свойства различных поверхностей и обеспечивающих перевод оптических снимков в радиолокационные изображения местности, адекватные текущим изображениям. Текущие и эталонные изображения представляются в виде цифровых матриц, и их корреляционная обработка проводится в бортовой ЭВМ в соответствии с разработанным алгоритмом сравнения. Главной целью работы радиолокационной ГСН является определение координат проекции центра масс ракеты относительно точки цели в условиях работы по местности различной информативности, заданных метеорологических условиях с учетом сезонных изменений, наличия радиотехнического противодействия и влияния динамики полета ракеты на точность съема текущего изображения.

Разработка и дальнейшее совершенствование оптических и радиолокационных ГСН базируются на научных и технических достижениях в области информатики, вычислительной техники, систем обработки изображений, на новых технологиях создания ГСН и их элементов. Разрабатываемые в настоящее время высокоточные системы самонаведения вобрали в себя накопленный опыт и современные принципы создания таких систем. Они используют высокопроизводительные бортовые процессоры, позволяющие реализовать сложные алгоритмы функционирования систем в масштабе реального времени.

Следующим шагом в создании точных и надежных систем самонаведения высокоточных ракет класса «земля–земля» стала разработка многоспектральных систем коррекции видимого, радио-, инфракрасного и ультрафиолетового диапазонов, комплексированных с каналами прямого наведения ракет на цель. Разработка каналов прямого наведения на цель сопряжена со значительными трудностями, связанными с особенностями целей, траекторий ракет, условиями их применения, а также типом головных частей и их боевыми характеристиками.

Сложность распознавания целей в режиме прямого наведения, определяющая сложность программно-алгоритмического обеспечения высокоточного наведения, привела к необходимости интеллектуализации систем наведения. Одним из ее направлений следует считать реализацию в системах принципов искусственного интеллекта на базе нейроподобных сетей.

Серьезные успехи фундаментальных и прикладных наук в нашей стране, в том числе в области теории информации и теории систем с искусственным интеллектом, позволяют реализовать концепцию создания суперточных, прецизионных ракетных систем поражения наземных целей, обеспечивающих эффективность работы в широком спектре условий боевого применения. Одной из последних реализованных разработок в данной области является оперативно-тактический ракетный комплекс «Искандер».

Автоматические устройства, устанавливаемые на носителях боевых зарядов (НБЗ) - ракетах, торпедах, бомбах и др. для обеспечения прямого попадания в объект атаки или сближения на расстояние, меньшее радиуса поражения зарядов. Головки самонаведения воспринимают энергию, излучаемую или отражаемую целью, определяют положение и характер движения цели и формируют соответствующие сигналы для управления движением НБЗ. По принципу действия головки самонаведения подразделяются на пассивные (воспринимают энергию, излучаемую целью), полуактивные (воспринимают отражённую от цели энергию, источник к-рой находится вне головки самонаведения) и активные (воспринимают отражённую от цели энергию, источник к-рой находится в самой головке самонаведения); по виду воспринимаемой энергии - на радиолокационные, оптические (инфракрасные или тепловые, лазерные, телевизионные), акустические и др.; по характеру сигнала воспринимаемой энергии - на импульсные, непрерывные, квазинепрерывные и др.
Основными узлами головок самонаведения являются координатор и электронно-вычислительное устройство. Координатор обеспечивает поиск, захват и сопровождение цели по угловым координатам, дальности, скорости и спектральным характеристикам воспринимаемой энергии. Электронно-вычислительное устройство обрабатывает информацию, получаемую от координатора, и формирует сигналы управления координатором и движением НБЗ в зависимости от принятого метода наведения.. Этим обеспечивается автоматическое слежение за целью и наведение на неё НБЗ. В координаторах пассивных головок самонаведения устанавливаются приёмники энергии, излучаемой целью (фоторезисторы, телевизионные трубки, рупорные антенны и пр.); селекция цели, как правило, производится по угловым координатам и спектру излучаемой ею энергии. В координаторах полуактивных головок самонаведения устанавливается приёмник отражённой от цели энергии; селекция цели может производиться по угловым координатам, дальности, скорости и характеристикам принимаемого сигнала, что повышает информативность и помехоустойчивость головок самонаведения. В координаторах активных головок самонаведения устанавливаются передатчик энергии и её приёмник, селекция цели может производиться аналогично предыдущему случаю; активные головки самонаведения являются полностью автономными автоматическими устройствами. Самыми простыми по устройству считаются пассивные головки самонаведения, наиболее сложными - активные. Для повышения информативности и помехоустойчивости могут быть комбинированные головки самонаведения , в к-рых используются различные комбинации принципов действия, видов воспринимаемой энергии, способов модуляции и обработки сигналов. Показателем помехоустойчивости головок самонаведения является вероятность захвата и сопровождения цели в условиях помех.
Лит.: Лазарев Л.П. Инфракрасные и световые приборы самонаведегшя и наведения летательных аппаратов. Изд. 2-е. М., 1970; Проектирование ракетных и ствольных систем. М., 1974.
В.К. Баклицкий.

© nvuti-info.ru, 2024
Новости бизнеса, дизайна, красоты, строительства, финансов