От чего зависит нагрев воздуха. Нагревание атмосферы

19.10.2019

Все жизненные процессы на Земле обусловлены тепловой энергией. Главным источником, от которого Земля и получают тепловую энергию, является Солнце. Оно излучает энергию в виде различных лучей — электромагнитных волн. Излучение Солнца в виде электромагнитных волн, распространяющихся со скоростью 300000 км/с, называется , которая состоит из лучей различной длины, несущих к Земле свет и тепло.

Радиация бывает прямая и рассеянная. Не будь атмосферы, земная поверхность получала бы только прямую радиацию. Поэтому радиацию, приходящую непосредственно от Солнца в виде прямых солнечных лучей и при безоблачном небе называют прямой. Она несет наибольшее количество тепла и света. Но, проходя через атмосферу, солнечные лучи частично рассеиваются, отклоняются от прямого пути в результате отражения от молекул воздуха, капелек воды, пылинок и переходят в лучи, идущие во всех направлениях. Такая радиация называется рассеянной. Поэтому светло бывает и в тех местах, куда прямые солнечные лучи (прямая радиация) не проникают (полог леса, теневая сторона скал, гор, зданий и т.д.). Рассеянная радиация обусловливает и цвет неба. Всю солнечную радиацию, приходящую к земной поверхности, т.е. прямую и рассеянную, называют суммарной. Земная поверхность, поглощая солнечную радиацию, нагревается и сама становится источником излучения тепла в атмосферу. Оно называется земным излучением, или земной радиацией и в значительной мере задерживается нижними слоями атмосферы. Поглощенная земной поверхностью радиация Солнца расходуется на нагревание воды, грунтов, воздуха, испарение и излучение в атмосферу. Земная, а не определяет температурный режим тропосферы, т.е. солнечные лучи, проходящие через все , ее не нагревают. Самое большое количество тепла получают и нагреваются до наиболее высоких температур нижние слои атмосферы, непосредственно прилегающие к источнику тепла — земной поверхности. По мере удаления от земной поверхности нагревание ослабевает. Именно поэтому в тропосфере с высотой понижается в среднем 0,6°С на каждые 100 м подъема. Это общая закономерность для тропосферы. Бывают случаи, когда вышележащие слои воздуха оказываются теплее нижележащих. Такое явление называется температурной инверсией.

Нагревание земной поверхности существенно различается не только по высоте. Количество суммарной солнечной радиации напрямую зависит от угла падения солнечных лучей Чем ближе эта величина к 90°, тем больше солнечной энергии получает земная поверхность.

В свою очередь, угол падения солнечных лучей на определенную точку земной поверхности определяется ее географической широтой. Сила прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце в зените (в районе экватора), его лучи падают на земную поверхность отвесно, т.е. преодолевают атмосферу кратчайшим путем (под 90°) и интенсивно отдают свою энергию малой площади. По мере удаления от экваториальной зоны на юг или на север длина пути солнечных лучей увеличивается, т.е. уменьшается угол их падения на земную поверхность. Лучи все больше и больше начинают как бы скользить по Земле и приближаются к касательной линии в районе полюсов. При этом тот же пучок энергии рассеивается на большую площадь, увеличивается количество отраженной энергии. Таким образом, где солнечные лучи падают на земную поверхность под углом 90°, постоянно высокие , а по мере передвижения к полюсам становится все холоднее. Именно на полюсах, где солнечные лучи падают под углом 180° (т.е. по касательной), тепла меньше всего.

Такая неравномерность распределения тепла на Земле в зависимости от широты места позволяет выделить пять тепловых поясов: один жаркий, два и два холодных.

Условия нагревания солнечной радиацией воды и суши весьма различны. Теплоемкость воды в два раза больше, чем суши. Это значит, что при одинаковом количестве тепла суша нагревается вдвое быстрее воды, а при охлаждении происходит обратное. Кроме того, вода при нагревании испаряется, на что затрачивается немалое количество тепла. На суше тепло сосредоточивается только в верхнем ее слое, в глубину передается лишь небольшая его часть. В воде же лучи нагревают сразу значительную толщу, чему способствует и вертикальное перемешивание воды. В результате вода накапливает тепла гораздо больше, чем суша, удерживает его дольше и расходует более равномерно, чем суша. Она медленнее нагревается и медленнее охлаждается.

Поверхность суши неоднородна. Ее нагревание в значительной мере зависит от физических свойств почв и , льда, экспозиции (угла наклона участков суши по отношению к падающим солнечным лучам) склонов. Особенности подстилающей поверхности обусловливают различный характер изменения температур воздуха в течении суток и года. Наиболее низкие температуры воздуха в течении суток на суше отмечаются незадолго до восхода Солнца (отсутствие притока солнечной радиации и сильное земное излучение ночью). Наиболее высокие — после полудня (14-15 ч). В течении года в Северном полушарии наиболее высокие температуры воздуха на суше отмечаются в июле, а самые низкие — в январе. Над водной поверхностью суточный максимум температуры воздуха смещен и отмечается в 15-16 ч, а минимум через 2-3 ч после восхода Солнца. Годовой максимум (в Северном полушарии) приходится на август, а минимум — на февраль.

— приборы, применяемые для нагревания воздуха в приточных системах вентиляции, системах кондиционирования воздуха, воздушного отопления, а также в сушильных установках.

По виду теплоносителя калориферы могут быть огневыми, водяными, паровыми и электрическими.

Наибольшее распространение в настоящее время имеют водяные и паровые калориферы, которые подразделяют на гладкотрубные и реб-ристые; последние, в свою очередь, подразделяют на пластинчатые и спирально-навивные.

Различают одноходовые и многоходовые калориферы. В одноходовых теплоноситель движется по трубкам в одном направлении, а в многоходовых несколько раз меняет направление движения вследствие на-личия в коллекторных крышках перегородок (рис. XII.1).

Калориферы выполняют двух моделей: средней (С) и большой (Б).

Расход тепла для нагревания воздуха определяется по формулам:

где Q" — расход тепла для нагревания воздуха, кДж/ч (ккал/ч); Q — то же, Вт; 0,278 — коэффициент перевода кДж/ч в Вт; G — массовое количество нагревае-мого воздуха, кг/ч, равное Lp [здесь L — объемное количество нагреваемого воздуха, м 3 /ч; р — плотность воздуха (при температуре t K), кг/м 3 ]; с — удельная теплоемкость воздуха, равная 1 кДж/(кг-К) ; t к — температура воздуха после калорифера, °С; t н — температура воздуха до калорифера, °С.

Для калориферов первой ступени подогрева температура tн равна температуре наружного воздуха.

Температура наружного воздуха принимается равной расчетной вентиляционной (параметры климата категории А) при проектировании общеобменной вентиляции, предназначенной для борьбы с избыт-ками влаги, тепла и газами, ПДК которых больше 100 мг/м3. При про-ектировании общеобменной вентиляции, предназначенной для борьбы с газами, ПДК которых меньше 100 мг/м3, а также при проектировании приточной вентиляции для компенсации воздуха, удаляемого через местные отсосы, технологические вытяжки или системы пневматического транспорта, температура наружного воздуха принимается равной расчетной наружной температуре tн для проектирования отопления (параметры климата категории Б).

В помещение без теплоизбытков следует подавать приточный воздух с температурой, равной температуре внутреннего воздуха tВ для данного помещения. При наличии теплоизбытков приточный воздух подают с пониженной температурой (на 5-8° С). Приточный воздух с температурой ниже 10° С не рекомендуется подавать в помещение даже при наличии значительных тепловыделений из-за возможности возникновения простудных заболеваний. Исключение составляют случаи применения специальных анемостатов.


Необходимая площадь поверхности нагрева калориферов Fк м2, определяется по формуле:

где Q — расход тепла для нагревания воздуха, Вт (ккал/ч); К — коэффициент теплопередачи калорифера, Вт/(м 2 -К) [ккал/(ч-м 2 -°С)]; t ср.Т. — средняя температура теплоносителя, 0 С; t ср.в. — средняя температура нагреваемого воздуха, проходящего через калорифер, °С, равная (t н + t к)/2.

Если теплоносителем служит пар, то средняя температура теплоносителя tср.Т. равна температуре насыщения при соответствующем давлении пара.

Для воды температура tср.Т. определяется как среднее арифметическое температуры горячей и обратной воды:

Коэффициент запаса 1,1-1,2 учитывает потери тепла на охлаждение воздуха в воздуховодах.

Коэффициент теплопередачи калориферов К зависит от вида теплоносителя, массовой скорости движения воздуха vp через калорифер, геометрических размеров и конструктивных особенностей калориферов, скорости движения воды по трубкам калорифера.

Под массовой скоростью понимают массу воздуха, кг, проходящего за 1 с через 1 м2 живого сечения калорифера. Массовая скорость vp, кг/(см2), определяется по формуле

По площади живого сечения fЖ и поверхности нагрева FК подбирают модель, марку и число калориферов. После выбора калориферов уточняют по действительной площади живого сечения калорифера fД данной модели массовую скорость движения воздуха:

где А, А 1 , n, n 1 и т — коэффициенты и показатели степеней, зависящие от конструкции калорифера

Скорость движения воды в трубках калорифера ω, м/с, определяется по формуле:

где Q"— расход тепла для нагревания воздуха, кДж/ч (ккал/ч); рв — плотность воды, равная 1000 кг/м3, св — удельная теплоемкость воды, равная 4,19 кДж/(кг-К) ; fTP — площадь живого сечения для прохода теплоносителя, м2, tг — температура горячей воды в подающей магистрали, °С; t 0 — температура обратной воды, 0С.

На теплоотдачу калориферов влияет схема обвязки их трубопроводами. При параллельной схеме присоединения трубопроводов через отдельный калорифер проходит только часть теплоносителя, а при последовательной схеме через каждый калорифер проходит весь расход теплоносителя.

Сопротивление калориферов проходу воздуха р, Па, выражается следующей формулой:

где В и z — коэффициент и показатель степени, которые зависят от конструкции калорифера.

Сопротивление последовательно расположенных калориферов равно:

где т — число последовательно расположенных калориферов. Расчет заканчивается проверкой теплопроизводительности (теплоотдачи) калориферов по формуле

где QK - теплоотдача калориферов, Вт (ккал/ч); QK - то же, кДж/ч, 3,6 - коэффициент перевода Вт в кДж/ч FK — площадь поверхности нагрева калориферов, м2, принятая в результате расчета калориферов данного типа; К - коэффициент теплопередачи калориферов, Вт/(м2-К) [ккал/(ч-м2-°С)]; tср.в - средняя температура нагреваемого воздуха, проходящего через калорифер, °С; tср. Т - средняя температура теплоносителя, °С.

При подборе калориферов запас на расчетную площадь поверхно-сти нагрева принимается в пределах 15 - 20 %, на сопротивление про-ходу воздуха - 10 % и на сопротивление движению воды - 20 %.

Предварительный расчет поверхности нагрева насадки.

Q в =V в *(i в // – i в /)* τ = 232231,443*(2160-111,3)*0,7 = 333,04*10 6 кДж/цикл.

Среднелогарифмическая разница температур за цикл.

Скорость продуктов сгорания (дыма) =2,1 м/с. Тогда скорость воздуха при нормальных условиях:

6,538 м/с

Средние за период температуры воздуха и дыма.

935 о С

680 о С

Средняя температура верха насадки в дымовой и воздушный периоды

Средняя за цикл температура верха насадки

Средняя температура низа насадки в дымовом и воздушном периодах:

Средняя за цикл температура низа насадки

Определяем значение коэффициентов теплоотдачи для верха и низа насадки. Для насадки принятого типа при значении 224018000 величина теплоотдачи конвекцией определяется из выражения Nu=0,0346*Re 0,8

Действительную скорость дыма определяем по формуле W д =W до *(1+βt д). Действительную скорость воздуха при температуре t в и давлении воздуха р в =0,355 Мн/м 2 (абсолютных) определяем по формуле

Где 0,1013-Мн/м 2 – давление при нормальных условиях.

Значение кинематической вязкости ν и коэффициента теплопроводности λ для продуктов сгорания выбираем по таблицам. При этом учитываем, что значение λ очень мало зависит от давления, и при давлении 0,355 Мн/м 2 можно использовать значения λ при давлении 0,1013 Мн/м 2 . Кинематическая вязкость газов обратно пропорциональна давлению, того значения ν при давлении 0,1013 Мн/м 2 делим на отношение .

Эффективная длина луча для блочной насадки

= 0,0284 м

Для данной насадки м 2 /м 3 ; ν =0,7 м 3 /м 3 ; м 2 /м 2 .

Расчеты сведены в таблицу 3.1

Таблица 3.1 – Определение коэффициентов теплоотдачи для верха и низа насадки.

Наименование, значение и единицы измерения размеров Расчетная формула Предварительный расчет Уточненный расчет
верх низ верх Низ
дым воздух дым воздух воздух воздух
Средние за период температуры воздуха и дыма 0 С По тексту 1277,5 592,5 1026,7 355,56
Коэффициент теплопроводности продуктов сгорания и воздуха l 10 2 Вт/(мград) По тексту 13,405 8,101 7,444 5,15 8,18 5,19
Кинематическая вязкость продуктов сгорания и воздуха g 10 6 м 2 /с Приложение 236,5 52,6 92,079 18,12 53,19 18,28
Определяющий диаметр канала d ,м 0,031 0,031 0,031 0,031 0,031 0,031
Действительная скорость дыма и воздуха W м/с По тексту 11,927 8,768 6,65 4,257 8,712 4,213
Re
Nu По тексту 12,425 32,334 16,576 42,549 31,88 41,91
Коэффициент теплоотдачи конвекцией a к Вт/м 2 *град 53,73 84,5 39,804 70,69 84,15 70,226
0,027 - 0,045 - - -
1,005 - 1,055 - - -
Коэффициент лучистой теплоотдачи a п Вт/м 2 *град 13,56 - 5,042 - - -
a Вт/м 2 *град 67,29 84,5 44,846 70,69 84,15 70,226


Теплоемкость и коэффициент теплопроводности кирпича l насадки рассчитываются по формулам:

С,кДж/(кг*град) l , Вт/(мград)

Динас 0,875+38,5*10 -5 *t 1,58+38,4*10 -5 t

Шамот 0,869+41,9*10 -5 * t 1,04+15,1*10 -5 t

Эквивалентная полутолщина кирпича определяется по формуле

мм

Таблица 3.2 – Физические величины материала и коэффициент аккумуляции тепла для верней и нижней половины регенеративной насадки

Наименование размеров Расчетная формула Предварительный расчет Уточненный расчет
верх низ верх Низ
динас шамот динас шамот
Средняя температура, 0 С По тексту 1143,75 471,25 1152,1 474,03
Объемная плотность,r кг/м 3 По тексту
Коэффициент теплопроводности l Вт/(мград) По тексту 2,019 1,111 2,022 1,111
Теплоемкость С,кДж/(кг*град) По тексту 1,315 1,066 1,318 1,067
Коэффициент температуропроводности а, м 2 /час 0,0027 0,0018 0,0027 0,0018
F 0 S 21,704 14,59 21,68 14,58
Коэффициент аккумуляции тепла h к 0,942 0,916 0,942 0,916

Как очевидно с таблицы, значение h к > ,т.е.кирпичи используется в тепловом отношении на всю его толщину. Соответственно к выше составленного принимаем значение коэффициента теплового гистерезиса для верха насадки x=2,3, для низа x=5,1.

Тогда суммарный коэффициент теплопередачи рассчитывается по формуле:

для верха насадки

58,025 кДж/(м 2 цикл*град)

для низа насадки

60,454 кДж/(м 2 цикл*град)

В среднем для насадки в целом

59,239 кДж/(м 2 цикл*град)

Поверхность нагрева насадки

22093,13 м 2

Объем насадки

= 579,87 м 3

Площадь горизонтального сечения насадки в свету

=9,866 м 2

Вспомните

  • С помощью какого прибора измеряют температуру воздуха? Какие виды вращения Земли вам известны? Почему на Земле происходит смена дня и ночи?

Как нагревается земная поверхность и атмосфера. Солнце излучает огромное количество энергии. Однако атмосфера пропускает к земной поверхности только половину солнечных лучей. Часть их отражается, часть поглощается облаками, газами и частицами пыли (рис. 83).

Рис. 83. Расход солнечной энергии, поступающей на Землю

Пропуская солнечные лучи, атмосфера от них почти не нагревается. Нагревается же земная поверхность, и сама становится источником тепла. Именно от нее нагревается атмосферный воздух. Поэтому у земной поверхности воздух тропосферы теплее, чем на высоте. При подъеме вверх па каждый километр температура воздуха понижается на 6 "С. Высоко в горах из-за низкой температуры накопившийся снег не тает даже летом. Температура в тропосфере меняется не только с высотой, но и в течение определенных промежутков времени: суток, года.

Различия в нагревании воздуха в течение суток и года. Днем солнечные лучи освещают земную поверхность и прогревают ее, от нее нагревается и воздух. Ночью поступление солнечной энергии прекращается, и поверхность вместе с воздухом постепенно остывает.

Солнце наиболее высоко стоит над горизонтом в полдень. В это время поступает больше всего солнечной энергии. Однако самая высокая температура наблюдается через 2-3 ч после полудня, так как на передачу тепла от поверхности Земли к тропосфере требуется время. Самая низкая температура бывает перед восходом солнца.

Температура воздуха изменяется и по сезонам года. Вы уже знаете, что Земля движется вокруг Солнца по орбите и земная ось постоянно наклонена к плоскости орбиты. Из-за этого в течение года на одной и той же территории солнечные лучи падают на поверхность по-разному.

Когда угол падения лучей более отвесный, поверхность получает больше солнечной энергии, температура воздуха повышается и наступает лето (рис. 84).

Рис. 84. Падение солнечных лучей на земную поверхность в полдень 22 июня и 22 декабря

Когда солнечные лучи наклонены сильнее, поверхность нагревается слабо. Температура воздуха в это время понижается, и наступает зима. Самый теплый месяц в Северном полушарии - июль, а самый холодный - январь. В Южном полушарии - наоборот: самый холодный месяц года - июль, а самый теплый - январь.

По рисунку определите, как отличается угол падения солнечных лучей 22 июня и 22 декабря на параллелях 23,5° с. ш. и ю. ш.; на параллелях 66,5° с. ш. и ю. ш.

Подумайте, почему самые теплые и холодные месяцы - не июнь и декабрь, когда солнечные лучи имеют наибольший и наименьший углы падения на земную поверхность.

Рис. 85. Средние годовые температуры воздуха Земли

Показатели изменений температуры. Чтобы выявить общие закономерности изменения температуры, используют показатель средних температур: средних суточных, средних месячных, средних годовых (рис. 85). Например, для вычисления средней суточной температуры в течение суток несколько раз измеряют температуру, суммируют эти показатели и полученную сумму делят на количество измерений.

Определите:

  • среднюю суточную температуру по показателям четырех измерений за сутки:-8°С, -4°С,+3°С,+1°С;
  • среднюю годовую температуру Москвы, используя данные таблицы.

Таблица 4

Определяя изменение температуры, обычно отмечают ее самые высокие и самые низкие показатели.

    Разница между самыми высокими и самыми низкими показателями называется амплитудой температур.

Амплитуду можно определять для суток (суточная амплитуда), месяца, года. Например, если наибольшая температура за сутки равна +20°С, а наименьшая - +8°С, то суточная амплитуда составит 12°С (рис. 86).

Рис. 86. Суточная амплитуда температур

Определите, на сколько градусов годовая амплитуда в Красноярске больше, чем в Санкт-Петербурге, если средняя температура июля в Красноярске +19°С, а января- -17°С; в Санкт-Петербурге +18°С и -8°С соответственно.

На картах распределение средних температур отражают при помощи изотерм.

    Изотермы - это линии, соединяющие точки с одинаковой средней температурой воздуха за определенный промежуток времени.

Обычно показывают изотермы самого теплого и самого холодного месяцев года, т. е. июля и января.

Вопросы и задания

  1. Как происходит нагревание воздуха атмосферы?
  2. Как изменяется температура воздуха в течение суток?
  3. От чего зависит разница в нагревании поверхности Земли в течение года?

Аэродинамический нагрев

нагрев тел, движущихся с большой скоростью в воздухе или другом газе. А. н. - результат того, что налетающие на тело молекулы воздуха тормозятся вблизи тела.

Если полет совершается со сверхзвуковой скоростью культур, торможение происходит прежде всего в ударной волне (См. Ударная волна), возникающей перед телом. Дальнейшее торможение молекул воздуха происходит непосредственно у самой поверхности тела, в пограничном слое (См. Пограничный слой). При торможении молекул воздуха их тепловая энергия возрастает, т. е. температура газа вблизи поверхности движущегося тела повышается максимальная температура, до которой может нагреться газ в окрестности движущегося тела, близка к т. н. температуре торможения:

T 0 = Т н + v 2 /2c p ,

где Т н - температура набегающего воздуха, v - скорость полёта тела, c p - удельная теплоёмкость газа при постоянном давлении. Так, например, при полёте сверхзвукового самолёта с утроенной скоростью звука (около 1 км/ сек ) температура торможения составляет около 400°C, а при входе космического аппарата в атмосферу Земли с 1-й космической скоростью (8,1 км/сек ) температура торможения достигает 8000 °С. Если в первом случае при достаточно длительном полёте температура обшивки самолёта достигнет значений, близких к температуре торможения, то во втором случае поверхность космического аппарата неминуемо начнёт разрушаться из-за неспособности материалов выдерживать столь высокие температуры.

Из областей газа с повышенной температурой тепло передаётся движущемуся телу, происходит А. н. Существуют две формы А. н. - конвективная и радиационная. Конвективный нагрев - следствие передачи тепла из внешней, «горячей» части пограничного слоя к поверхности тела. Количественно конвективный тепловой поток определяют из соотношения

q k = а (Т е -Т w),

где T e - равновесная температура (предельная температура, до которой могла бы нагреться поверхность тела, если бы не было отвода энергии), T w - реальная температура поверхности, a - коэффициент конвективного теплообмена, зависящий от скорости и высоты полёта, формы и размеров тела, а также от других факторов. Равновесная температура близка к температуре торможения. Вид зависимости коэффициента а от перечисленных параметров определяется режимом течения в пограничном слое (ламинарный или турбулентный). В случае турбулентного течения конвективный нагрев становится интенсивнее. Это связано с тем обстоятельством, что, помимо молекулярной теплопроводности, существенную роль в переносе энергии начинают играть турбулентные пульсации скорости в пограничном слое.

С повышением скорости полёта температура воздуха за ударной волной и в пограничном слое возрастает, в результате чего происходит Диссоциация и Ионизация молекул. Образующиеся при этом атомы, ионы и электроны диффундируют в более холодную область - к поверхности тела. Там происходит обратная реакция (Рекомбинация), идущая с выделением тепла. Это даёт дополнительный вклад в конвективный А. н.

При достижении скорости полёта порядка 5000 м/сек температура за ударной волной достигает значений, при которых газ начинает излучать. Вследствие лучистого переноса энергии из областей с повышенной температурой к поверхности тела происходит радиационный нагрев. При этом наибольшую роль играет излучение в видимой и ультрафиолетовой областях спектра. При полёте в атмосфере Земли со скоростями ниже первой космической (8,1 км/сек ) радиационный нагрев мал по сравнению с конвективным. При второй космической скорости (11,2 км/сек ) их значения становятся близкими, а при скоростях полёта 13-15 км/сек и выше, соответствующих возвращению на Землю после полётов к другим планетам, основной вклад вносит уже радиационный нагрев.

Особо важную роль А. н. играет при возвращении в атмосферу Земли космических аппаратов (например, «Восток», «Восход», «Союз»). Для борьбы с А. н. космические аппараты оснащаются специальными системами теплозащиты (См. Теплозащита).

Лит.: Основы теплопередачи в авиационной и ракетной технике, М., 1960; Дорренс У. Х., Гиперзвуковые течения вязкого газа, пер. с англ., М., 1966; Зельдович Я. Б., Райзер Ю. П., Физика ударных волн и высокотемпературных гидродинамических явлений, 2 изд., М., 1966.

Н. А. Анфимов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Аэродинамический нагрев" в других словарях:

    Нагрев тел, движущихся с большой скоростью в воздухе или др. газе. А. н. результат того, что налетающие на тело молекулы воздуха тормозятся вблизи тела. Если полёт совершается со сверхзвук. скоростью, торможение происходит прежде всего в ударной… … Физическая энциклопедия

    Нагрев тела, движущегося с большой скоростью в воздухе (газе). Заметный аэродинамический нагрев наблюдается при движении тела со сверхзвуковой скоростью (например, при движении головных частей межконтинентальных баллистических ракет) EdwART.… … Морской словарь

    аэродинамический нагрев - Нагревание обтекаемой газом поверхности тела, движущегося в газообразной среде с большой скоростью при наличии конвективного, а при гиперзвуковых скоростях и радиационного теплообмена с газовой средой в пограничном или ударном слое. [ГОСТ 26883… … Справочник технического переводчика

    Повышение температуры тела, движущегося с большой скоростью в воздухе или др. газе. Аэродинамический нагрев результат торможения молекул газа вблизи поверхности тела. Так, при входе космического аппарата в атмосферу Земли со скоростью 7,9 км/с… … Энциклопедический словарь

    аэродинамический нагрев - aerodinaminis įšilimas statusas T sritis Energetika apibrėžtis Kūnų, judančių dujose (ore) dideliu greičiu, paviršiaus įšilimas. atitikmenys: angl. aerodynamical heating vok. aerodynamische Aufheizung, f rus. аэродинамический нагрев, m pranc.… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas - повышение темп ры тела, движущегося с большой скоростью в воздухе или др. газе. А. и. результат торможения молекул газа вблизи поверхности тела. Так, при входе космич. аппарата в атмосферу Земли со скоростью 7,9 км/с темп pa воздуха у поверхности … Естествознание. Энциклопедический словарь

    Аэродинамический нагрев конструкции ракеты - Нагрев поверхности ракеты во время ее движения в плотных слоях атмосферы с большой скоростью. А.н. – результат того, что налетающие на ракету молекулы воздуха тормозятся вблизи ее корпуса. При этом происходит переход кинетической энергии… … Энциклопедия РВСН

    Concorde Concorde в аэропор … Википедия

© nvuti-info.ru, 2024
Новости бизнеса, дизайна, красоты, строительства, финансов