Основные параметры влажного воздуха. Определение параметров влажного воздуха Уравнение дальтона для влажного воздуха

19.10.2019

Состояние влажного воздуха определяется совокупностью параметров: температурой воздуха t в, относительной влажностью в %, скоростью движения воздуха V в м/с, концентрацией вредных примесей С мг/м 3 , влагосодержанием d г/кг, теплосодержанием I кДж/кг.

Относительная влажность в долях или в% показывает степень насыщенности воздуха водяными парами по отношению к состоянию полного насыщения и равна отношению давления Р п водяного пара в ненасыщенном влажном воздухе к парциальному давлению Р п. н. водяного пара в насыщенном влажном воздухе при одной и той же температуре и барометрическом давлении:

d= или d=623, г/кг, (1.2)

где В - барометрическое давление воздуха, равное сумме парциальных давлений сухого воздуха Р С.В. и водяного пара Р П.

Парциальное давление водяных паров, находящихся в насыщенном состоянии, зависит от температуры:

КДж/кг, (1.4)

где с В - теплоемкость сухого воздуха, равная 1,005 ;

с П - теплоемкость водяного пара, равная 1,8 ;

r - удельная теплота парообразования, равная 2500 ;

I = 1,005t + (2500 + 1,8t) d * 10 -3 , кДж/кг. (1.5)

I-d диаграмма влажного воздуха. Построение основных процессов изменения состояния воздуха. Точка росы и мокрого термометра. Угловой коэффициент и связь его с поступлением тепла и влаги в помещение

I-d диаграмма влажного воздуха - это основной инструмент для построения процессов изменения его параметров. I-d диаграмма основана на нескольких уравнениях: теплосодержания влажного воздуха:

I = 1,005 * t + (2500 + 1,8 * t) * d/1000, кДж/кг (1.6)

в свою очередь давление водяных паров:

давление водяных паров, насыщающих воздух:

Па (Формула Фильнея), (1.9)

а - относительная влажность воздуха, %.

В свою очередь в формулу 1.7 входит барометрическое давление Р бар, разное для различных районов строительства, следовательно, для точного построения процессов требуется I-d диаграмма для каждого района.

I-d диаграмма (рис.1.1) имеет косоугольную систему координат для увеличения рабочей площади, приходящейся на влажный воздух и лежащей выше линии = 100%. Угол раскрытия может быть разным (135 - 150є).

I-d диаграмма связывает воедино 5 параметров влажного воздуха: тепло и влагосодержание, температуру, относительную влажность и давление водяных паров насыщения. Зная два из них, по положению точки можно определить все остальные.

Основными характерными процессами на I-d диаграмме являются:

Нагрев воздуха по d = const (без увеличения влагосодержания) рис.1.1, точки 1-2. В реальных условиях это нагрев воздуха в калорифере. Увеличивается температура и теплосодержание. Уменьшается относительная влажность воздуха.

Охлаждение воздуха по d = const. Точки 1-3 на рис.1.1 Этот процесс происходит в поверхностном воздухоохладителе. Уменьшается температура и теплосодержание. Увеличивается относительная влажность воздуха. Если продолжить охлаждение, то процесс дойдет до линии = 100% (точка 4) и, не пересекая линию, пойдет вдоль нее, выделяя влагу из воздуха (точка 5) в количестве (d 4 -d 5) г/кг. На этом явлении основана осушка воздуха. В реальных условиях процесс не доходит до = 100%, а окончательная относительная влажность зависит от начальной величины. По данным профессора Кокорина О.Я. для поверхностных воздухоохладителей:

max = 88% при начальном нач = 45%

max = 92% при начальном 45% < нач 70%

max = 98% при начальном нач > 70%.

На I-d диаграмме процесс охлаждения и осушки обозначается прямой линией, соединяющей точки 1 и 5.

Однако встреча с = 100% линии охлаждения по d = const имеет свое собственное название - это точка росы. По положению этой точки легко определяется температура точки росы.

Изотермический процесс t = const (линия 1-6 на рис 1.1). Все параметры возрастают. Увеличивается и тепло, и влагосодержание, и относительная влажность. В реальных условиях это увлажнение воздуха паром. То небольшое количество явного тепла, которое вносится паром, обычно не учитывается при построении процесса, т.к оно незначительно. Однако такое увлажнение достаточно энергоемко.

Адиабатный процесс I = const (линия 1-7 на рис.1.1). Снижается температура воздуха, увеличивается влагосодержание и относительная влажность. Процесс осуществляется при непосредственном контакте воздуха с водой, проходя либо через орошаемую насадку, либо через форсуночную камеру.

При глубине орошаемой насадки 100 мм можно получить воздух с относительной влажностью = 45% при начальной - 10%, насадка глубиной 200 мм дает = 70%, а 300 мм - = 90% (по данным блоккамер сотового увлажнения фирмы ВЕЗА). Проходя через форсуночную камеру, воздух увлажняется до величины = 90 - 95%, но со значительно большими энергозатратами на распыление воды, чем в орошаемых насадках.

Продолжив линию I = const до = 100%, мы получим точку (и температуру) мокрого термометра, это равновесная точка при контакте воздуха с водой.

Однако в аппаратах, где происходит контакт воздуха с водой, особенно по адиабатическому циклу, возможно возникновение болезнетворной флоры, и поэтому такие аппараты запрещены для использования в ряде медицинских и продовольственных отраслей.

В странах с жарким и сухим климатом аппараты на основе адиабатического увлажнения весьма распространены. Так, например, в Багдаде при дневной температуре в июне - июле 46єС и относительной влажности 10% такой кулер позволяет снизить температуру приточного воздуха до 23єС и при 10-20-кратном воздухообмене в помещении достигнуть внутренней температуры 26єС и относительной влажности 60-70%.

При сложившейся методике построения процессов на I-d диаграмме влажного воздуха наименование реперных точек получили следующую аббревиатуру:

Н - точка наружного воздуха;

В - точка внутреннего воздуха;

К - точка после нагрева воздуха в калорифере;

П - точка приточного воздуха;

У - точка воздуха, удаляемого из помещения;

О - точка охлажденного воздуха;

С - точка смеси воздуха двух различных параметров и масс;

ТР - точка росы;

ТМ - точка мокрого термометра, которая и будет сопровождать все дальнейшие построения.

При смешивании воздуха двух параметров линия смеси пойдет по прямой, соединяющей эти параметры, а точка смеси будет лежать на расстоянии, обратно пропорциональном массам смешиваемого воздуха.

КДж/кг, (1.10)

Г/кг. (1.11)

При одновременном выделении в помещение избыточного тепла и влаги, что обычно бывает при нахождении в помещении людей, воздух будет нагреваться и увлажняться по линии, называемой угловым коэффициентом (или лучом процесса, либо тепловлажностным отношением) е:

КДж/кгН 2 О, (1.12)

где?Q n - суммарное количество полного тепла, кДж/ч;

W - суммарное количество влаги, кг/ч.

При?Q n = 0 е = 0.

При?W = 0 е > ? (рис.1.2)

Таким образом, I-d диаграмма по отношению к внутреннему воздуху (или к другой точке) разбивается на четыре квадранта:

Iе от? до 0 - это нагрев и увлажнение;

IIе от 0 до - ? - охлаждение и увлажнение;

IIIе от - ? до 0 - охлаждение и осушка;

IVе от 0 до? - нагрев и осушка - в вентиляции и кондиционировании не используется.

Для точного построения луча процесса на I-d диаграмме, следует взять значение е в кДж/гН 2 О, и отложить на оси влагосодержание d = 1, или 10 г, а на оси теплосодержание в кДж/кг соответствующее е и полученную точку соединить с точкой 0 I-d диаграммы.

Процессы, не являющиеся основными, называются политропическими.

Изотермический процесс t = const характеризуется значением е = 2530 кДж/кг.

Рис.1.1

Рис.1.2 I-d диаграмма влажного воздуха. Основные процессы


Атмосферный воздух практически всегда является влажным за счёт испарения в атмосферу воды с открытых водоёмов, а также вследствие горения органических топлив с образованием воды и т.п. Нагретый атмосферный воздух очень часто используется для сушки различных материалов в сушильных камерах и в других технологических процессах. Относительное содержание водяных паров в воздухе также является одной из важнейших составляющих климатического комфорта в жилых помещениях и в помещениях для длительного хранения продовольственных товаров и промышленных изделий. Эти обстоятельства определяют важность изучения свойств влажного воздуха и расчёта процессов сушки.

Здесь мы рассмотрим термодинамическую теорию влажного воздуха в основном с целью научиться рассчитывать процесс сушки влажного материала, т.е. научиться рассчитывать расход воздуха, который бы обеспечивал необходимую скорость сушки материала при заданных параметрах сушильной установки, а также с целью рассмотреть вопросы анализа и расчёта установок климатизации и кондиционирования воздуха.

Водяной пар, который присутствует в воздухе, может находиться либо в перегретом состоянии, либо в насыщенном. При определённых условиях водяной пар в воздухе может конденсироваться; тогда влага выпадает в виде тумана (облака), либо происходит запотевание поверхности – выпадение росы. Тем не менее, несмотря на фазовые переходы, находящийся во влажном воздухе водяной пар может с большой точностью рассматриваться как идеальный газ вплоть до состояния сухого насыщенного. В самом деле, например, при температуре t = 50 о С насыщенный водяной пар имеет давление p s = 12300 Па и удельный объём . Имея в виду, что газовая постоянная для водяного пара

т.е. при этих параметрах даже насыщенный водяной пар с ошибкой не более 0.6% ведёт себя как идеальный газ.

Таким образом, мы будем рассматривать влажный воздух как смесь идеальных газов с той лишь оговоркой, что в состояниях, близких к насыщению параметры водяного пара будут определяться по таблицам или диаграммам.



Введём некоторые понятия, характеризующие состояние влажного воздуха. Пусть в объёме пространства 1 м 3 находится влажный воздух в равновесном состоянии. Тогда количество сухого воздуха в этом объёме будет по определению плотностью сухого воздуха ρ св (кг/м 3), а количество водяного пара соответственно ρ вп (кг/м 3). Это количество водяного пара называется абсолютной влажностью влажного воздуха. Плотность влажного воздуха будет, очевидно,

При этом следует иметь в виду, что плотности сухого воздуха и водяного пара должны вычисляться при соответствующих парциальных давлениях, таким образом, что

т.е. мы считаем справедливым закон Дальтона для влажного воздуха.

Если температура важного воздуха равна t , то

Часто вместо плотности водяных паров , т.е. вместо абсолютной влажности, влажный воздух характеризуют так называемым влагосодержанием d , которое определяют как количество водяных паров, приходящееся на 1 кг сухого воздуха. Для определения влагосодержания d выделим во влажном воздухе некоторый объём V 1 , такой чтобы масса сухого воздуха в нём составляла 1 кг, т.е. размерность V 1 в нашем случае есть м 3 /кг св. Тогда количество влаги в этом объёме будет d кг вп /кг св. Очевидно, что влагосодержание d связано с абсолютной влажностью ρ вп. В самом деле, масса влажного воздуха в объёме V 1 равна

Но поскольку объём V 1 мы выбрали так, чтобы в нём содержался 1 кг сухого воздуха, то очевидно . Второе же слагаемое есть по определению влагосодержание d , т.е.



Считая сухой воздух и водяной пар идеальными газами, получим

С учётом находим связь влагосодержания с парциальным давлением водяных паров в воздухе

Подставляя сюда численные значения , имеем окончательно

Поскольку водяной пар всё-таки не является идеальным газом в том смысле, что его парциальное давление и температура значительно ниже критических, влажный воздух не может содержать произвольное количество влаги в виде пара. Проиллюстрируем это на диаграмме p–v водяного пара (см. рис. 1).

Пусть начальное состояние водяных паров во влажном воздухе изображается точкой С. Если теперь при постоянной температуре t С добавлять во влажный воздух влагу в виде пара, например, путём испарения воды с открытой поверхности, то точка, изображающая состояние водяного пара, будет перемещаться вдоль изотермы t С =const влево. Плотность водяного пара во влажном воздухе, т.е. его абсолютная влажность, будет возрастать. Это увеличение абсолютной влажности будет продолжаться до тех пор, пока водяной пар при заданной температуре t С не станет сухим насыщенным (состояние S). Дальнейшее увеличение абсолютной влажности при заданной температуре невозможно, так как водяной пар начнёт конденсироваться. Таким образом, максимальное значение абсолютной влажности при заданной температуре есть плотность сухого насыщенного пара при этой температуре, т.е.

Отношение абсолютной влажности при заданной температуре и максимально возможной абсолютной влажности при той же температуре называется относительной влажностью влажного воздуха, т.е. по определению имеем

Возможен также другой вариант конденсации паров во влажном воздухе, а именно изобарное охлаждение влажного воздуха. Тогда остаётся постоянным и парциальное давление водяного пара в воздухе. Точка C на диаграмме p–v будет смещаться влево вдоль изобары вплоть до точки R. Далее начнётся выпадение влаги. Такая ситуация очень часто осуществляется летом в течение ночи при охлаждении воздуха, когда на холодных поверхностях выпадает роса, а в воздухе образуется туман. По этой причине температура в точке R, при которой начинает выпадать роса, называется точкой росы и обозначается t R . Она определяется как температура насыщения, соответствующая заданному парциальному давлению пара

Энтальпия влажного воздуха в расчёте на 1 кг сухого воздуха вычисляется суммированием

при этом учитывается, что энтальпии сухого воздуха и водяного пара отсчитываются от температуры 0 о С (точнее от температуры тройной точки воды, равной 0.01 о С).

Влажным воздухом называется смесь сухого воздуха с водяным паром. Фактически атмосферный воздух всегда содержит некоторое количество водяных паров, т.е. является влажным.

Водяной пар, содержащийся в воздухе, обычно находится в разрежённом состоянии и подчиняется законам для идеального газа, что позволяет применять эти законы и для влажного воздуха.

Состояние пара в воздухе (перегретый или насыщенный ) определяется величиной его парциального давления p , которое зависит от общего давления влажного воздуха p и парциального давления сухого воздуха p :

Насыщенный воздух воздух с максимальным содержанием водяного пара при данной температуре.

Абсолютная влажность воздуха – масса водяного пара, содержащегося

в 1 м влажного воздуха (плотность пара) при его парциальном давлении и температуре влажного воздуха:

Относительная влажность воздуха – отношение действительной абсолютной влажности воздуха к абсолютной влажности насыщенного воздуха при той же температуре:

При постоянной температуре давление воздуха изменяется пропорционально его плотности (закон Бойля – Мариотта), поэтому относительная влажность воздуха может быть определена также и по уравнению:

где p – давление насыщения воздуха при данной температуре;

p – парциальное давление пара при данной температуре:

Для сухого воздуха = 0, для насыщенного – = 100%.

Точка росы – температура t , при которой давление пара p становится равным давлению насыщения p . При охлаждении воздуха ниже точки росы водяные пары конденсируются.

воздуха (11.5)

Используя уравнение состояния идеального газа для компонентов влажного воздуха (пара и сухого воздуха), зависимости (11.2), (11.3) и (11.5), а также молекулярные массы воздуха ( = 28,97) и пара ( = 18,016), получают расчётную формулу:

воздуха (11.6)

Для случая, когда влажный воздух находится при атмосферном давлении,: p=B .



Теплоёмкость влажного воздуха при постоянном давлении определяется как сумма теплоёмкостей 1 кг сухого воздуха и d , кг водяного пара:

(11.7)

В расчётах можно принять:

Энтальпия влажного воздуха при температуре t определяется как сумма энтальпий 1 кг сухого воздуха и d , кг водяного пара:

Здесь r – скрытая теплота парообразования, равная ~2500 кДж / кг . Таким образом, расчётная зависимость для определения величины энтальпии влажного воздуха принимает вид:

(11.9)

Примечание: величина I относится к 1 кг сухого воздуха или к (1+d ) кг влажного воздуха.

В технических расчётах для определения параметров влажного воздуха обычно используется I–d диаграмма влажного воздуха, предложенная в 1918 году профессором Л.К. Рамзиным.

В I–d диаграмме (см. рис. 11.2) графически связаны основные параметры, определяющие тепловлажностное состояние воздуха: температура t , относи-тельная влажность воздуха , влагосодержание d , энтальпия I , парциальное давление пара P , содержащегося в паровоздушной смеси. Зная два каких-либо параметра, можно найти остальные на пересечении соответствующих

линий I – d -диаграммы.

2. Схема лабораторной установки (прибора)

Относительную влажность воздуха в лабораторной работе определяют с помощью психрометра типа: «Гигрометр психрометрический ВИТ-1».

Психрометр (рис. 11.1) состоит из двух одинаковых термометров:

«сухого» – 1 и «смоченного» – 2 . Смачивание шарика термометра 2 осуществляется с помощью батистового фитиля 3, опущенного в сосуд 4 с водой.

2 1


3 t


4t и влажностью воздуха φ для данного прибора установлена экспериментальным путем. По результатам экспериментов составлена специальная психрометрическая таблица (паспорт), помещённая на лицевой панели лабораторного психрометра.

На интенсивность испарения существенное влияние оказывает скорость обтекания батистового фитиля воздухом, что вносит погрешность в показания обычного психрометра. Эта погрешность учитывается в расчётах введением поправок в соответствии с паспортом прибора.

Примечание: от рассмотренного недостатка свободен психрометр Августа , в котором оба термометра (сухой и смоченный) обдуваются с постоянной скоростью потоком воздуха, создаваемым вентилятором с пружинным двигателем.

1. Абсолютная влажность.

Массовое количество пара в 1 м 3 воздуха –

2. Относительная влажность.

Отношение массового количества пара в паровоздушной смеси к максимально возможному количеству при той же температуре

(143)

Уравнение Менделеева – Клапейрона:

Для пара

Откуда:

Для определения относительной влажности воздуха используется прибор ""психрометр"", состоящий из двух термометров: мокрого и сухого. Разность показаний термометров градуируется в значения .

3. Влагосодержание.

Количество пара в смеси, приходящееся на 1 кг сухого воздуха.

Пусть мы имеем 1 м 3 воздуха. Его масса - .

В этом кубометре содержится: - кг пара, - кг сухого воздуха.

Очевидно: .

4. Энтальпия воздуха.

Складывается из двух величин: энтальпия сухого воздуха и пара.

5. Точка росы.

Температура, при которой газ данного состояния, охлаждаясь при постоянном влагосодержании (d=const), становится насыщенным ( =1.0), называется точкой росы .

6. Температура мокрого термометра.

Температура, при которой газ при взаимодействии с жидкостью, охлаждаясь при постоянной энтальпии (J=const), становится насыщенным ( =1.0), называется температурой мокрого термометра t M .

Диаграмма состояния воздуха.

Диаграмма составлена отечественным учёным Рамзиным (1918 год) и представлена на рис.169.

Диаграмма представлена для среднего атмосферного давления Р=745 мм рт. ст. и по сути является изобарой равновесия системы пар - сухой воздух.

Оси координат диаграммы J-d развёрнуты под углом 135 0 . Внизу располагается наклонная линия для определения парциального давления водяного пара P n . Парциальное давление сухого воздуха

Выше на диаграмме проведена кривая насыщения ( =100%). Процесс сушки на диаграмме можно представить только выше этой кривой. Для произвольной точки ""А"" на диаграмме Рамзина можно определить следующие параметры воздуха:

Рис.169. Диаграмма J-d состояния влажного воздуха.

Статика сушки.

В процессе конвективной сушки, например, воздухом влажный материал взаимодействует, контактирует с паровоздушной смесью, парциальное давление водяного пара в которой составляет . Влага может уходить из материала в виде пара, если парциальное давление пара в тонком пограничном слое над поверхностью материала или, как говорят, в материале Р м будет больше .

Движущая сила процесса сушки (Дальтон, 1803 г.)

(146)

В состоянии равновесия =0. Влагосодержание материала, соответствующее условию равновесия, называется равновесным влагосодержанием (U p).

Проведём опыт. В камеру сушильного шкафа при определённой температуре (t=const) поместим абсолютно сухое вещество на длительное время. При определённом воздуха в шкафу влагосодержание материала достигнет U p . Изменяя , можно получить кривую (изотерму) сорбции влаги материалом. При уменьшении - кривую десорбции.

На рис.170 представлена кривая сорбции – десорбции влажного материала (изотерма равновесия).

Рис.170. Изотерма равновесия влажного материала с воздухом.

1-область гигроскопического материала, 2-гигроскопическая точка, 3-область влажного материала, 4-область сорбции, 5-область десорбции, 6-область сушки.

Различают кривые равновесия:

1. гигроскопического

2. негигроскопического материала.

Изотермы представлены на рис.171.

Рис.171. Изотермы равновесия.

а) гигроскопического, б) негигроскопического материала.

Относительная влажность воздуха в сушилке и в атмосфере.

После сушилки при контакте с атмосферным воздухом гигроскопичный материал значительно увеличивает влагосодержание на (рис.171 а) за счёт адсорбции влаги из воздуха. Поэтому гигроскопический материал после сушки должен храниться в условиях, не допускающих контакта с атмосферным воздухом (эксикация, обёртка и др.).

Материальный баланс.

В качестве учёбной обычно принимают туннельную сушилку, т.к. она имеет транспортные средства в виде вагонеток (сушка кирпича, древесины и др.). Схема установки представлена на рис.172.

Рис.172. Схема туннельной сушилки.

1-вентилятор, 2-калорифер, 3-сушилка, 4-вагонетки, 5-линия рецикла отработанного воздуха.

Обозначения:

Расход и параметры воздуха до калорифера, после него и после сушилки.

© nvuti-info.ru, 2024
Новости бизнеса, дизайна, красоты, строительства, финансов