Решение обыкновенных дифференциальных уравнений. Численные методы решения обыкновенных дифференциальных уравнений При применении численного метода решения дифференциальных уравнений

24.12.2023

Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции y=y (x). Их можно записать в виде

Где х - независимая переменная.

Наивысший порядок n входящей в уравнение производной называется порядком дифференциального уравнения.

Методы решения обыкновенных дифференциальных уравнений можно разбить на следующие группы: графические, аналитические, приближенные и численные.

Графические методы используют геометрические построения.

Аналитические методы встречаются в курсе дифференциальных уравнений. Для уравнений первого порядка (с разделяющимися переменными, однородных, линейных и др.), а также для некоторых типов уравнений высших порядков (например, линейных с постоянными коэффициентами) удается получить решения в виде формул путем аналитических преобразований.

Приближенные методы используют различные упрощения самих уравнений путем обоснованного отбрасывания некоторых содержащихся в них членов, а также специальным выбором классов искомых функций.

Численные методы решения дифференциальных уравнений в настоящее время являются основным инструментом при исследовании научно-технических задач, описываемых дифференциальными уравнениями. При этом необходимо подчеркнуть, что данные методы особенно эффективны в сочетании с использованием современных компьютеров.

Простейшим численным методом решения задачи Коши для ОДУ является метод Эйлера. Рассмотрим уравнение в окрестностях узлов (i=1,2,3,…) и заменим в левой части производную правой разностью. При этом значения функции узлах заменим значениями сеточной функции:

Полученная аппроксимация ДУ имеет первый порядок, поскольку при замене на допускается погрешность.

Заметим, что из уравнения следует

Поэтому представляет собой приближенное нахождение значение функции в точке при помощи разложения в ряд Тейлора с отбрасыванием членов второго и более высоких порядков. Другими словами, приращение функции полагается равным её дифференциалу.

Полагая i=0, с помощью соотношения находим з значение сеточной функции при:

Требуемое здесь значение задано начальным условием, т.е.

Аналогично могут быть найдены значения сеточной функции в других узлах:

Построенный алгоритм называется методом Эйлера

Рисунок - 19 Метод Эйлера

Геометрическая интерпретация метода Эйлера дана на рисунке. Изображены первые два шага, т.е. проиллюстрировано вычисление сеточной функции в точках. Интегральные кривые 0,1,2 описывают точные решения уравнения. При этом кривая 0 соответствует точному решению задачи Коши, так как она проходит через начальную точку А (x 0 ,y 0). Точки B,C получены в результате численного решения задачи Коши методом Эйлера. Их отклонения от кривой 0 характеризуют погрешность метода. При выполнении каждого шага мы фактически попадаем на другую интегральную кривую. Отрезок АВ - отрезок касательной к кривой 0 в точке А, ее наклон характеризуется значением производной. Погрешность появляется потому, что приращение значения функции при переходе от х 0 к х 1 заменяется приращением ординаты касательной к кривой 0 в точке А. Касательная ВС уже проводится к другой интегральной кривой 1. таким образом, погрешность метода Эйлера приводит к тому, что на каждом шаге приближенное решение переходит на другую интегральную кривую.

Для решения дифференциальных уравнений необходимо знать значение зависимой переменной и ее производных при некоторых значениях независимой переменной. Если дополнительные условия задаются при одном значении неизвестной, т.е. независимой переменной., то такая задача называется задачей Коши. Если начальные условия задаются при двух или более значениях независимой переменной, то задача называется краевой. При решении дифференциальных уравнений различных видов, функция, значения которой требуется определить вычисляется в виде таблицы.

Классификация численных методов для решения дифр. Ур. Типов.

Задача Коши – одношаговые: методы Эйлера, методы Рунге- Кутта; – многошаговые: метод Майна, Метод Адамса. Кроевая задача – метод сведения кроевой задачи к задаче Коши; –метод конечных разностей.

При решении задачи Коши должны быть заданы дифр. ур. порядка n или система дифр. ур. первого порядка из n уравнений и n дополнительных условий для ее решения. Дополнительные условия должны быть заданы при одном и том же значении независимой переменной. При решении кроевой задачи должны быть заданы ур. n-ого порядка или система из n уравнений и n дополнительных условий при двух или более значениях независимой переменной. При решении задачи Коши искомая функция определяется дискретно в виде таблицы с некоторым заданным шагом . При определении каждого очередного значения можно использовать информацию об одной предыдущей точке. В этом случае методы называют одношаговым, либо можно использовать информацию о нескольких предыдущих точках – многошаговые методы.

Обыкновенные дифференциальные ур. Задача Коши. Одношаговые методы. Метод Эйлера.

Задано: g(x,y)y+h(x,y)=0, y=-h(x,y)/g(x,y)= f(x,y), x 0 , y(x 0)=y 0 . Известно: f(x,y), x 0 , y 0 . Определить дискретное решение: x i , y i , i=0,1,…,n. Метод Эйлера основан на разложении функции в ряд Тейлора окрестности точки x 0 . Окрестность описывается шагом h. y(x 0 +h)y(x 0)+hy(x­ 0)+…+ (1). В методе Эйлера учитываются только два слагаемых ряда Тейлора. Введем обозначения. Формула Эйлера примет вид: y i+1 =y i +y i , y i =hy(x i)=hf(x i ,y i), y i+1 =y i +hf(x i ,y i) (2), i=0,1,2…, x i+1 =x i +h

Формула (2) является формулой простого метода Эйлера.

Геометрическая интерпретация формулы Эйлера

Для получения численного решения используется ф-ла касательной, проходящей через урав. касательной: y=y(x 0)+y(x 0)(x-x ­0), x=x 1 ,

y 1 =y(x 0)+f(x 0 ,y 0)  (x-x 0), т.к.

x-x 0 =h, то y 1 =y 0 +hf(x 0 ,y 0), f(x 0 ,y 0)=tg £.

Модифицированный метод Эйлера

Задано: y=f(x,y), y(x 0)=y 0 . Известно: f(x,y), x 0 , y 0 . Определить: зависимость y от x в виде табличной дискретной функции: x i , y i , i=0,1,…,n.

Геометрическая интерпертация

1) вычислим тангенс угла наклона в начальной точке

tg £=y(x n ,y n)=f(x n ,y n)

2) Вычислим значение  y n+1 на

конце шага по формуле Эйлера

 y n+1 =y n +f(x n ,y n) 3) Вычислим тангенс угла наклона

касательной в n+1 точке: tg £=y(x n+1 ,  y n+1)=f(x n+1 ,  y n+1) 4) Вычислим среднее арифметическое углов

наклона: tg £=½. 5) Используя тангенс угла наклона пересчитаем значение функции в n+1 точке: y n+1 =y n +htg £= y n +½h=y n +½h – формула модифицированного метода Эйлера. Можно показать, что полученная ф-ла соответствует разложению ф-ии в ряд Тейлора, включая слагаемы (до h 2). Модифицированный метод Эйлнра в отличии от простого является методом вторго порядка точности, т.к. погрешность пропорциональна h 2 .

Лабораторная работа 1

Численные методы решения

обыкновенных дифференциальных уравнений (4 часа)

При решении многих физических и геометрических задач приходится искать неизвестную функцию по данному соотношению между неизвестной функцией, ее производными и независимыми переменными. Такое соотношение называется дифференциальным уравнением , а отыскание функции, удовлетворяющей дифференциальному уравнению, называется решением дифференциального уравнения.

Обыкновенным дифференциальным уравнением называется равенство

, (1)

в котором

- независимая переменная, изменяющаяся в некотором отрезке , а - неизвестная функция y ( x ) и ее первые n производные. называется порядком уравнения .

Задача заключается в нахождении функции y, удовлетворяющей равенству (1). Более того, не оговаривая это отдельно, будем предполагать, что искомое решение обладает той или иной степенью гладкости, необходимой для построения и «законного» применения того или иного метода.

Различают два типа обыкновенных дифференциальных уравнений

Уравнения без начальных условий

Уравнения с начальными условиями.

Уравнения без начальных условий - это уравнение вида (1).

Уравнение с начальными условиями - это уравнение вида (1), в котором требуется найти такую функцию

, которая при некотором удовлетворяет следующим условиям: ,

т.е. в точке

функция и ее первые производных принимают наперед заданные значения.

Задачи Коши

При изучении способов решения дифференциальных уравнений приближенными методами основной задачей считается задача Коши.

Рассмотрим наиболее популярный метод решения задачи Коши – метод Рунге-Кутта. Этот метод позволяет строить формулы расчета приближенного решения практически любого порядка точности.

Выведем формулы метода Рунге-Кутта второго порядка точности. Для этого решение представим куском ряда Тейлора, отбрасывая члены с порядком выше второго. Тогда приближенное значение искомой функции в точке x 1 можно записать в виде:

(2)

Вторую производную y "( x 0 ) можно выразить через производную функции f ( x , y ) , однако в методе Рунге-Кутта вместо производной используют разность

соответственно подбирая значения параметров

Тогда (2) можно переписать в виде:

y 1 = y 0 + h [ β f ( x 0 , y 0 ) + α f ( x 0 + γh , y 0 + δh )], (3)

где α , β , γ и δ – некоторые параметры.

Рассматривая правую часть (3) как функцию аргумента h , разложим ее по степеням h :

y 1 = y 0 +( α + β ) h f ( x 0 , y 0 ) + αh 2 [ γ f x ( x 0 , y 0 ) + δ f y ( x 0 , y 0 )],

и выберем параметры α , β , γ и δ так, чтобы это разложение было близко к (2). Отсюда следует, что

α + β =1, αγ =0,5, α δ =0,5 f ( x 0 , y 0 ).

С помощью этих уравнений выразим β , γ и δ через параметры α , получим

y 1 = y 0 + h [(1 - α ) f ( x 0 , y 0 ) + α f ( x 0 +, y 0 + f ( x 0 , y 0 )], (4)

0 < α ≤ 1.

Теперь, если вместо (x 0 , y 0 ) в (4) подставить (x 1 , y 1 ), получим формулу для вычисления y 2 приближенного значения искомой функции в точке x 2 .

В общем случае метод Рунге-Кутта применяется на произвольном разбиении отрезка [ x 0 , X ] на n частей, т.е. с переменным шагом

x 0 , x 1 , …,x n ; h i = x i+1 – x i , x n = X. (5)

Параметры α выбирают равными 1 или 0,5. Запишем окончательно расчетные формулы метода Рунге-Кутта второго порядка с переменным шагом для α =1:

y i+1 =y i +h i f(x i + , y i + f(x i , y i)), (6.1)

i = 0, 1,…, n -1.

и α =0,5:

y i+1 =y i + , (6.2)

i = 0, 1,…, n -1.

Наиболее употребляемые формулы метода Рунге-Кутта – формулы четвертого порядка точности:

y i+1 =y i + (k 1 + 2k 2 + 2k 3 + k 4),

k 1 =f(x i , y i), k 2 = f(x i + , y i + k 1), (7)

k 3 = f(x i + , y i + k 2), k 4 = f(x i +h, y i +hk 3).

Для метода Рунге-Кутта применимо правило Рунге для оценки погрешности. Пусть y ( x ; h ) – приближенное значение решения в точке x , полученное по формулам (6.1), (6.2) или (7) с шагом h , а p порядок точности соответствующей формулы. Тогда погрешность R ( h ) значения y ( x ; h ) можно оценить, используя приближенное значение y ( x ; 2 h ) решения в точке x , полученное с шагом 2 h :

(8)

где p =2 для формул (6.1) и (6.2) и p =4 для (7).

Известно, что обыкновенное дифференциальное уравнение первого порядка имеет вид: .Решением этого уравнения является дифференцируемая функция, которая при подстановке в уравнение обращает его в тождество. График решения дифференциального уравнения (рис 1.) называетсяинтегральной кривой.

Производную в каждой точкеможно геометрически интерпретировать как тангенс угланаклона касательной к графику решения, проходящего через эту точку, т е.:.

Исходное уравнение определяет целое семейство решений. Чтобы выделить одно решение, задают начальное условие: , где – некоторое заданное значение аргумента, а–начальное значение функции.

Задача Коши заключается в отыскании функции , удовлетворяющей исходному уравнению и начальному условию. Обычно определяют решение задачи Коши на отрезке, расположенном справа от начального значения, т. е. для.

Даже для простых дифференциальных уравнений первого порядка не всегда удается получить аналитическое решение. Поэтому большое значение имеют численные методы решения. Численные методы позволяют определить приближенные значения искомого решения на некоторой выбранной сетке значений аргумента. Точкиназываютсяузлами сетки , а величина – шагом сетки. Часто рассматриваютравномерные сетки, для которых шаг постоянен,. При этом решение получается в виде таблицы, в которой каждому узлу сеткисоответствуют приближенные значения функциив узлах сетки.

Численные методы не позволяют найти решение в общем виде, зато они применимы к широкому классу дифференциальных уравнений.

Сходимость численных методов решения задачи Коши. Пусть – решение задачи Коши. Назовем погрешностью численного метода функцию , заданную в узлах сетки. В качестве абсолютной погрешности примем величину.

Численный метод решения задачи Коши называется сходящимся , если для него при. Говорят, что метод имеет-ый порядок точности, если для погрешности справедлива оценка,константа, .

Метод Эйлера

Простейшим методом решения задачи Коши является метод Эйлера. Будем решать задачу Коши

на отрезке . Выберем шаги построим сетку с системой узлов. В методе Эйлера вычисляются приближенные значения функциив узлах сетки:. Заменив производнуюконечными разностями на отрезках,, получим приближенное равенство:,, которое можно переписать так:,.

Эти формулы и начальное условие являются расчетными формулами метода Эйлера.

Геометрическая интерпретация одного шага метода Эйлера заключается в том, что решение на отрезке заменяется касательной, проведенной в точкек интегральной кривой, проходящей через эту точку. После выполненияшагов неизвестная интегральная кривая заменяется ломаной линией(ломаной Эйлера).

Оценка погрешности. Для оценки погрешности метода Эйлера воспользуемся следующей теоремой.

Теорема. Пусть функция удовлетворяет условиям:

.

Тогда для метода Эйлера справедлива следующая оценка погрешности: , где– длина отрезка. Мы видим, что метод Эйлера имеет первый порядок точности.

Оценка погрешности метода Эйлера часто бывает затруднительна, так как требует вычисления производных функции . Грубую оценку погрешности даетправило Рунге (правило двойного пересчета), которое используется для различных одношаговых методов, имеющих -ый порядок точности. Правило Рунге заключается в следующем. Пусть– приближения, полученные с шагом, а– приближения, полученные с шагом. Тогда справедливо приближенное равенство:

.

Таким образом, чтобы оценить погрешность одношагового метода с шагом , нужно найти то же решение с шагоми вычислить величину, стоящую справа в последней формуле, т.е.. Так как метод Эйлера имеет первый порядок точности, т. е., то приближенное равенство имеет вид:.

Используя правило Рунге, можно построить процедуру приближенного вычисления решения задачи Коши с заданной точностью . Для этого нужно, начав вычисления с некоторого значения шага , последовательно уменьшать это значение в два раза, каждый раз вычисляя приближенное значение,. Вычисления прекращаются тогда, когда будет выполнено условие: . Для метода Эйлера это условие примет вид:. Приближенным решением будут значения,.

Пример 1. Найдем решение на отрезке следующей задачи Коши:,. Возьмем шаг. Тогда.

Расчетная формула метода Эйлера имеет вид:

, .

Решение представим в виде таблицы 1:

Таблица 1

Исходное уравнение есть уравнение Бернулли. Его решение можно найти в явном виде: .

Для сравнения точного и приближенного решений представим точное решение в виде таблицы 2:

Таблица 2

Из таблицы видно, что погрешность составляет

Определение дифференциального уравнения Эйлера. Рассмотрены методы его решения.

Содержание

Дифференциальное уравнение Эйлера - это уравнение вида
a 0 x n y (n) + a 1 x n-1 y (n-1) + ... + a n-1 xy′ + a n y = f(x) .

В более общем виде уравнение Эйлера имеет вид:
.
Это уравнение подстановкой t = ax+b приводится к более простому виду, которое мы и будем рассматривать.

Приведение дифференциального уравнения Эйлера к уравнению с постоянными коэффициентами.

Рассмотрим уравнение Эйлера:
(1) .
Оно сводится к линейному уравнению с постоянными коэффициентами подстановкой:
x = e t .
Действительно, тогда
;
;
;

;
;
..........................

Таким образом, множители, содержащие x m , сокращаются. Остаются члены с постоянными коэффициентами. Однако на практике, для решения уравнений Эйлера, можно применять методы решения линейных ДУ с постоянными коэффициентами без использования указанной выше подстановки.

Решение однородного уравнения Эйлера

Рассмотрим однородное уравнение Эйлера:
(2) .
Ищем решение уравнения (2) в виде
.
;
;
........................
.
Подставляем в (2) и сокращаем на x k . Получаем характеристическое уравнение:
.
Решаем его и получаем n корней, которые могут быть комплексными.

Рассмотрим действительные корни. Пусть k i - кратный корень кратности m . Этим m корням соответствуют m линейно независимых решений:
.

Рассмотрим комплексные корни. Они появляются парами вместе с комплексно сопряженными. Пусть k i - кратный корень кратности m . Выразим комплексный корень k i через действительную и мнимую части:
.
Этим m корням и m комплексно сопряженным корням соответствуют 2 m линейно независимых решений:
;
;
..............................
.

После того как получены n линейно независимых решений, получаем общее решение уравнения (2):
(3) .

Примеры

Решить уравнения:


Решение примеров > > >

Решение неоднородного уравнения Эйлера

Рассмотрим неоднородное уравнение Эйлера:
.
Метод вариации постоянных (метод Лагранжа) также применим и к уравнениям Эйлера.

Сначала мы решаем однородное уравнение (2) и получаем его общее решение (3). Затем считаем постоянные функциями от переменной x . Дифференцируем (3) n - 1 раз. Получаем выражения для n - 1 производных y по x . При каждом дифференцировании члены, содержащие производные приравниваем к нулю. Так получаем n - 1 уравнений, связывающих производные . Далее находим n -ю производную y . Подставляем полученные производные в (1) и получаем n -е уравнение, связывающее производные . Из этих уравнений определяем . После чего интегрируя, получаем общее решение уравнения (1).

Пример

Решить уравнение:

Решение > > >

Неоднородное уравнение Эйлера со специальной неоднородной частью

Если неоднородная часть имеет определенный вид, то получить общее решение проще, найдя частное решение неоднородного уравнения. К такому классу относятся уравнения вида:
(4)
,
где - многочлены от степеней и , соответственно.

В этом случае проще сделать подстановку
,
и решать

© nvuti-info.ru, 2024
Новости бизнеса, дизайна, красоты, строительства, финансов