Построение чистового калибра для круглой стали. Прокат и калибровка валков для получения изделий круглого и квадратного сечения

26.11.2019

Article Index
Производство проката: классификация прокатных станков, технологические процессы прокатки
Трубопрокатные станы и станы специального назначения
Классификация прокатных станов по числу и расположению валков
Производство блюмов и слябов
Основныме особенности технологического процесса прокатки на блюмингах
Производство заготовок на заготовочных станах
Производство сортового проката
Калибровка валков для прокатки квадратных профилей
Калибровка валков для прокатки круглых профилей
Особенности калибровки валков для прокатки угловой стали
Производство проката на среднесортовых станах
Производство, рельсов, балок, швеллеров
Исходный материал для прокатки рельсов, балок и швеллеров
Устройство и расположение оборудования рельсобалочных станов
Технологический процесс прокатки рельсов
Контроль качества рельсов
Прокатка двутавровых широкополочных балок
Характеристика оборудования и его расположение на универсальном балочном стане
Производство катанки
Непрерывный проволочный стан 250 ММК
Агрегат для непрерывного литья и прокатки стальной катанки
Производство штрипсов и ленты
Прокатка горячекатаных полос и листов
Исходный материал и его нагрев
технология процесса прокатки толстолистовой стали
Производство двухслойных листов
Холодная прокатка листов
Производство специальных видов проката
Производство периодических профилей
Производство ребристых труб
All Pages

Калибровка валков для прокатки круглых профилей


ГОСТ 2590-71 предусматривает производствокруглой стали диаметром от 5 до 250 мм.

Прокатку этого профиля в зависимостиот марки стали и размеров осуществляют по-разному (рис.2.7).

Рисунок 2.7 . Способы I прокатки круглой стали:

I – овал, ромб или шестиугольник; II . IV. V – гладкая бочка или ящичный калибр; III – десятиугольный или ящичный калибры; VI – квадратный или шестиугольный калибры; VП – круг и т. д.; VIII – стрельчатый калибр, гладкая бочка или ящичный калибр; IX, Х – овал и т. д.

Способы 1 и 2 отличаются вариантами получения предчистового квадрата (квадрат точно зафиксирован по диагонали и имеется возможность регулировать высоту). Способ 2 является универсальным, так как позволяет получать ряд смежных размеров круглой стали (рис. 2). Способ 3 состоит в том, что предчистовой овал можно заменить десятиугольником. Этот способ применяют для прокатки крупных кругов. Способ 4 сходен со способом 2 и отличается от него только формой ребрового калибра. Отсутствие боковых стенок в этом калибре способствует лучшему удалению окалины. Так как данный способ позволяет широко регулировать размеры полосы, выходящей из ребрового калибра, его также называют универсальной калибровкой. Способы 5 и 6 отличаются от остальных более высокими вытяжками и большей устойчивостью овалов в проводках. Однако такие калибры требуют точной настройки стана, так как при небольшом избытке металла происходит их переполнение и образование заусенцев. Способы 7-10 основаны на применении системы калибровки овал-круг

Сравнение возможных способов получения круглой стали показывает, что способы 1-3 позволяют в большинстве случаев прокатывать весь сортамент круглой стали. Прокатка качественной стали должна проводиться по способам 7-10. Способ 9 как бы промежуточный между системами овал-круг и овал-овал, наиболее удобен в смысле регулирования и настройки стана, а также предупреждения закатов.

Во всех рассмотренных способах прокатки круглой стали форма чистового и предчистового калибров остается почти неизменной, что способствует установлению общих закономерностей поведения металла в этих калибрах для всех случаев прокатки.

Рисунок 2.8 Пример калибровки круглой стали по способу 2

Построение чистового калибра для круглой стали осуществляют следующим образом.

Определяют расчетный диаметр калибра (для горячего профиля при прокатке на минус) d г = (1,011-1,015)d х – это часть допуска +0,01d х где 0,01d х – увеличение диаметра по указанным выше причинам: d х = (d 1 + d 2 )/2 – диаметр круглого профиля в холодном состоянии. Тогда

d г = (1,011-1,015) (d 1 + d 2 )/2

где d 1 и d 2 максимальная и минимальная допустимые значения диаметра.

Предчистовые калибры для круга конструируют с учетом точности, предъявляемой к готовому профилю. Чем больше форма овала приближается к форме круга, тем точнее получается готовый круглый профиль. Теоретически наиболее подходящей формой профиля для получения правильного круга является эллипс. Однако такой профиль довольно затруднительно удерживать при входе в чистовой круглый калибр, поэтому применяют его сравнительно редко.

Плоские овалы хорошо удерживаются проводками и, кроме того, обеспечивают большие обжатия. При малых обжатиях овала весьма незначительны возможности колебания размеров в круглом калибре. Однако обратное явление справедливо лишь для случая, когда применяют большой овал и большую вытяжку.

Для круглых профилей средних и больших размеров овалы, очерченные одним радиусом, оказываются чересчур вытянутыми по большой оси и вследствие этого не обеспечивают надежного захвата полосы валками. Применение острых овалов помимо того, что не обеспечивает получения точного круга, вредно отражается на стойкости круглого калибра, особенно в выходной клети стана. Необходимость частых замен валков резко снижает производительность стана, а быстрая выработка калибров приводит к появлению вторых сортов, а иногда и брака.

Изучение причин и механизма выработки калибров показало, что острые кромки овала, которые остывают быстрее, чем остальные части полосы, обладают значительным сопротивлением деформации. Эти кромки, входя в калибр валков чистовой клети, действуют на дно калибра как абразив. Жесткие кромки в вершинах овала образуют на дне калибра ложбинки, которые приводят к образованию выступов на полосе по всей ее длине. Поэтому для круглых профилей диаметром 50-80 мм и выше более точное выполнение профиля достигается применением двух и трех радиусных овалов. Они имеют примерно ту же толщину, что и овал, очерченный одним радиусом, но благодаря применению дополнительных малых радиусов кривизны, ширина овала уменьшается.

Подобные овалы достаточно плоские для удержания их в проводках и обеспечивают надежный захват, а более округленный контур овала, приближающийся по своей форме к форме эллипса, создает благоприятные условия для равномерной деформации по ширине. .полосы в круглом калибре.

Vinogradov Aleks, head of a chair, candidate of technical science, associate professor

Марина Анатольевна Тимофеева, candidate of technical science, associate professor

Cherepovets State University, Russia

Championship participant: the National Research Analytics Championship - "Russia " ;

Предложена новая методика анализа систем калибровок валков сортовых станов. В качестве критериев предложено использовать коэффициенты неравномерности и эффективности, определяющие степень проработки структуры при прокатке сортовых профилей. На примере систем калибровки для производства круглого профиля диаметром 28 мм проанализированы возможные схемы деформации, а также преимущества и слабые места каждой из них.

Ключевые слова: системы калибров, сортовая прокатка, критерий эффективности.

A new technique for the systems analysis ofsection mill roll’s calibrations was proposed. Following criteria for analysis were proposed to use: the coefficients of uniformity and coefficient of efficiency, they determine the maturity structure at the profile rolling. Example of calibration systems for the production of round profile 28 mm was analyzed for possible scheme of deformation, as well as strengths and weaknesses of each scheme.

Keywords: system calibration, rolling of sections, the efficiency criterion.

Постановка задачи. Построение рациональной калибровки валков сортопрокатного стана - сложная задача. И ее сложность определяется приоритетом того или иного ожидаемого результата. Известно, что одни калибровки «заточены» на максимально быстрое формоизменение, другие на лучшую проработку структуры. Существуют калибровки, обеспечивающие более точные размеры поперечного сечения или позволяющие осуществлять энергоэффективные режимы деформации.

Известные из литературных источников системы калибровки имеют множество разновидностей, подсхем и подчас, решая одну задачу, существенно ухудшают условия другой. Поэтому разработка методики анализа системы калибровки на основе обоснованных критериев является актуальной научной задачей.

Методика проведения работы. Для анализа систем калибровок выбраны пары последовательных калибров, позволяющие с одной стороны рассмотреть все возможные схемы сочетаний калибров, а с другой обеспечить исследования предела членения сложной системы, такой как калибровка валков непрерывного сортового стана.

В качестве критериев эффективности системы выбраны коэффициенты неравномерности К инф и эффективности К эдэ , определяющие степень проработки структуры металла:

(1)

(2)

где ? i = b i / a i - компонента матрицы формоизменения;

a i , b i - длины радиус-векторов в i -ой точке поперечного сечения заготовки и выходящей полосы соответственно;

n - количество радиус-векторов.

Коэффициенты неравномерности и эффективности формоизменения, определяющие степень проработки структуры металла, в значительной степени зависят от форм чередующихся калибров, соотношения длин осей неравноосных калибров. Неправильный выбор отношения осей приводит к появлению трещин и разрывов в полосе при прокатке профилей особенно из труднодеформируемых сталей.

В процессе прокатки любого сортового профиля можно выделить два основных этапа: прокатка квадратной непрерывно-литой заготовки в черновых и промежуточных клетях стана с целью получения подката требуемой формы и размеров для чистовой группы клетей и прокатка в чистовых клетях. При построении рациональной калибровки валков прокатного стана необходимо стремиться к использованию одних и тех же калибров в черновых и промежуточных клетях при получении проката широкого профильного сортамента.

Так, при прокатке круглой стали диаметром 25-105 мм и шестигранной стали №№ 28-48 на среднесортном стане «350»ЧерМК ОАО «Северсталь» используемые системы калибровки отличаются только в чистовых и некоторых промежуточных клетях.

Попробуем на основе критериев эффективности формоизменения провести анализ проработки структуры при различных системах калибровок. В качестве примера рассмотрим прокатку круглой стали диаметром 28 мм.

При моделировании в качестве граничных приняты следующие условия: обеспечение захвата полосы валками, т.е. ? i ≤ [?] i , обеспечение устойчивости раската в калибре и обеспечение требуемой ширины раската.

Результаты работы. Результаты математического моделирования по возможным сочетаниям калибров представлены в виде графических зависимостей на рисунках 1-4.

Коэффициент К инф (рис. 1) характеризует неравномерность деформации металла по поперечному сечению профиля. Большее значение коэффициента говорит о большей неравномерности такой деформации при получении одного и того же профиля и, как следствие, лучшей прорабатываемости структуры металла. Для сравниваемых схем калибровки использовались известные из литературных источников неравноосные калибры (например, овальные, ромбические), с различным соотношением осей.

Рис. 1. Коэффициент интегральной неравномерности формоизменения К инф :

1- овал-круг; 2 - плоский овал-круг; 3 - овал-квадрат; 4 - овал-ребровой овал;

5 - ребровой овал-овал; 6 - ромб-квадрат.

При прокатке круглого профиля в чистовой паре калибров возможно применение систем овал-круг и плоский овал-круг. Как показано на рисунке 1 (линии 1,2) величина максимального значения коэффициента К инф в 1,4-1,5 раза больше при использовании в качестве предчистового плоского овального калибра.

Таким образом, с точки зрения лучшей проработки структуры, наиболее предпочтительной является система плоский овал-круг. При этом необходимо учитывать, что данная система при производстве круглой стали малых размеров требует высокой точности настройки стана для исключения дефектов круглого профиля «ус» или «лампас», а также «плоские грани», возникающих из-за переполнения или незаполнения калибров.

При производстве круглой и шестигранной стали в промежуточных и предчистовых клетях часто используют системы калибров с ребровым овалом, такие как овал-ребровой овал и ребровой овал-овал. В данных системах, как показали исследования, величина коэффициента неравномерности формоизмененияК инф в значительной степени зависит не только от отношения осей однорадиусного овального калибра (рис.1, линии 4 и 5), но и от отношения осей ребрового овала. Как показали результаты моделирования, наилучшие условия деформации обеспечивает калибр «ребровой овал», форма которого близка к кругу, т.е. отношения осей ребрового овала в промежуточных и предчистовых клетях равны 0,94-0,96. При таком отношении осей ребрового овала площадь высотной деформации становится соизмерима с площадью поперечной деформации, что приводит к увеличению значения коэффициента К инф . Изменяя отношение осей ребрового овала с 0,75 до 0,95, коэффициент формоизменения меняется от 0,038 до 0,138. При задаче раската овальной формы с отношением осей от 1,5 до 2,65 в ребровой овальный калибр, отношение осей которого равно 0,95, коэффициент К инф изменялся от 0,06 до 0,31.Таким образом, интенсивность роста неравномерности деформации в системе ребровой овал-овал больше чем в системе овал-ребровой овал.

В промежуточных клетях сортового стана при производстве круглого профиля возможно применение системы калибров овал-квадрат, в которой, как показало моделирование, отношение осей овального раската может быть в 1,5 раза больше чем в системе овал-круг при одних и тех же коэффициентах вытяжки. Это приводит к увеличению более чем в два раза коэффициента К инф (линии 1, 3 рис. 1), что обеспечивает лучшую проработку структуры металла.

В системе калибров ромб-квадрат, которую также можно использовать в промежуточных клетях, коэффициент интегральной неравномерности формоизменения примерно в 3 раза меньше чем в системе овал-квадрат, так как отношение осей ромбического калибра может быть 1,2-1,8, а овального калибра 2-2,7. Такое соотношение осей ромбического калибра обусловлено ограничением по условию захвата. Поэтому при производстве круглой стали целесообразнее в качестве вытяжной использовать систему калибров овал-квадрат.

Анализ данных по коэффициенту эффективности деформации в элементах калибра К эдэ (рис. 2), который позволяет оценить, насколько рациональна данная система калибров по вытяжной способности, показывает, что максимальные коэффициенты имеют место в системе овал-квадрат (рис. 2, кривая - 3), величина которых всреднем в 2 раза превышает значения коэффициентов К эдэ для других систем.

При сравнении систем овал-круг и плоский овал-круг (рис. 2, линии 1 и 2) видно, что деформация более эффективна в системе овал-круг, где величина коэффициента К эдэ при одних и тех же отношениях осей овальных калибров в 1,5-1,8 раза больше.

Рис. 2.Коэффициент формоизменения К эдэ:1- овал-круг; 2 - плоский овал-круг;

3 - овал-квадрат; 4 - овал-ребровой овал; 5 - ребровой овал-овал; 6 - ромб-квадрат .

При использовании ребрового овального калибра коэффициент эффективности деформации в элементах калибра больше при прокатке в системе овал-ребровой овал, чем в системе ребровой овал-овал последней (рис. 2, линии 4 и 5). Так, изменяя в системе ребровой овал-овал отношение осей ребрового овала с 0,75 до 0,95, коэффициент формоизменения К эдэ меняется от 0,06 до 0,11. При задаче раската овальной формы с отношением осей от 1,5 до 2,65 в ребровой овальный калибр, отношение осей которого равно 0,95, коэффициент К эдэ изменялся от 0,017 до 0,154.

Таким образом, интенсивность роста эффективности деформации в системе овал-ребровой овал больше чем в системе ребровой овал-овал.

С учетом отмеченных закономерностей распределения коэффициентов формоизменения в различных системах калибров предложены четыре варианта схем калибровки промежуточных, предчистовых и чистовых клетей среднесортного стана «350» при прокатке круглой стали диаметром 28 мм (см. табл. 1). Предложенные варианты отличаются системами калибров в промежуточных и предчистовых клетях. Во всех вариантах получены максимально возможные коэффициенты эффективности формоизменения К инф и К эдэ по клетям стана «350» при выполнении граничных условий.

Распределение коэффициентов эффективности по клетям стана представлены на рис. 3, 4. Для сопоставления предложенных вариантов были рассчитаны средние значения коэффициентов формоизменения К инф , К эдэ и коэффициента вытяжки по шести клетям стана №№ 7-12. Результаты расчетов представлены в таблице 2.

Из табл. 2 видно, что максимальное среднее значение коэффициента К инф имеет место в 4 варианте при использовании системы калибров овал-ребровой овал в промежуточных клетях, максимальное среднее значение коэффициента К эдэ и коэффициента вытяжки во 2 варианте, при использовании системы овал-квадрат и овал-круг.

Таким образом, прокатка с использованием схемы калибровки 4 варианта обеспечит максимальную по сравнению с другими вариантами прорабатываемость структуры металла, а значит минимальную бальность зерна структуры металла готового профиля.

Третий вариант характеризуется минимальными средними значениями К инф и К эдэ , что обеспечивает минимальные затраты энергии и может быть рекомендован для сортамента, подверженного последующей термообработке, нивелирующей разницу в получаемых структурах.

Рис.3. Распределение коэффициента формоизменения К инф при прокатке круглого профиля диаметром 28 мм на стане «350».

Рис. 4. Распределение коэффициента формоизменения К эдэ при прокатке круглого профиля диаметром 28 мм на стане «350»

Таблица 1 - Варианты калибровки валков среднесортного стана «350» при производстве круглого профиля диаметром 28 мм.

форма калибра

1 вариант

ящичный (1,2)

плоский овал (2,25)

2 вариант

ящичный (1,6)

3 вариант

ящичный (1,5)

ребровой овал (0,96)

4 вариант

ящичный (1,2)

ребровой овал (0,96)

ребровой овал (0,96)

Примечание: () - отношение осей неравноосного калибра

Таблица 2 - Средние значения показателей деформации и коэффициентов формоизменения при прокатке круглого профиля по различным схемам калибровки

вариант параметр *

К инф c р

К эдэ ср

* - ?ср 7-12 - средняя вытяжка по клетям №№ 7-12; ? ? - суммарная вытяжка по клетям №№ 7-12

Вариант 2 является компромиссным и может быть использован для получения профилей с невысокими требованиями к структуре, но позволяющий снизить затраты энергии для прокатки профилей.

Заключение. Таким образом, проведенный анализ и моделирование калибровки валков сортового стана «350» при варьировании таких параметров как отношение сторон неравноосных калибров (овал, ребровой овал) и коэффициентов вытяжки в предчистовых и чистовых клетях показали возможность разработки рациональных схем калибровки по критериям «лучшая прорабатываемость структуры» или «максимальная энергоэффективность».

Литература:

1. А.И. Виноградов, С.О.Король К вопросу создания калибровок сортовых валков, повышающих эффективность производства профилей из труднодеформируемых материалов/ Вестник Череповецкого государственного университета. - 2010.- №3(26).- с.116-120

2. Б.М. Илюкович, Н.Е. Нехаев, С.Е. Меркурьев Прокатка и калибровка. Справочник в 6 томах, том 1, Днепропетровск, Днепро-ВАЛ.-2002

Your rating: None Average: 6.2 (5 votes)

09 / 24 / 2012 - 22:50

Уважаемые Алексей Иванович и Марина Анатольевна! Сразу же оговоримся. Для того, чтобы дать грамотный комментарий к настоящему докладу, следует быть, по крайней мере, специалистом в области прокатного производства. А поскольку мы не являемся таковыми, то, вынуждены комментировать доклад с позиции просто металлургов. На наш взгляд, в связи с постоянно растущими требованиями к повышению эффективности работы сортопрокатных станов, выбор рациональной системы (схемы) калибровки валков является важной для производственников проблемой. Чем проще и доступнее ее решение, в данном случае посредством использования математического моделирования, тем больше ее привлекательность для заводчан. Авторы выбрали один из важнейших параметров эффективности – степень проработки структуры металла, характеризующихся двумя коэффициентами: неравномерности и эффективности (непонятны индексы у коэффициентов – «инф». и «эдэ»). Конечно, можно было в качестве критерия оптимальности выбрать сразу несколько параметров, например, относящихся к минимизации издержек: минимальный расход энергии на деформацию, минимальное число пропусков и кантовок, минимальный износ калибров и пр. Но, очевидно, это усложнило бы решение поставленной задачи, хотя и более оптимизировало бы его. Ничего не зная о других имеющихся методиках расчета систем калибровки валков сортопрокатных станов, затруднительно оценить степень ее новизны и преимущества. Однако важно, что разработанная авторами методика позволила определить рациональные схемы калибровки для конкретного стана конкретного предприятия. В развитие работы и для подтверждения эффективности определенных в результате моделирования и выполненного расчета схем можно порекомендовать авторам осуществить реальную прокатку с отбором проб металла для определения микроструктуры (величины зерна и пр.), последовательно на различных этапах продвижения металла в процессе прокатки (после черной, промежуточной и чистовой группы клетей). Кроме того, на наш взгляд, для повышения качества выпускаемой металлопродукции и совершенствования режимов прокатки целесообразно контактировать в этом направлении со сталеплавильщиками-разливщиками, поскольку последние владеют большим арсеналом средств, обеспечивающих оптимизацию структуры и уровня физико-механических свойств литой НЛЗ. Очевидно, важно совместно с ними осуществить выбор оптимального профиля (к примеру, квадрат со скругленными углами и пр.) с точки зрения сокращения циклов и «облегчения» последующих операций прокатки. Но это так – размышления, на которые навел нас ваш доклад. Приятно было оказаться в разделе не одинокими. Успеха вам на пути совершенствования технологических параметров и режимов прокатки. Титова Т.М., Титова Е.С.

09 / 22 / 2012 - 14:51

Это не первая попытка использовать коэффициента эффективности и неравномерности при калиброке валков прокатных станов. Но в дланном случае имеет место глубокий системный анализ в сочетании с математическим обоснованием. Можно только приветствовать усилия автора в наше время когда ослабевает интерес к техниченским науком. А.Выходец

Размеры и допуски калибра несколько отличаются от раз­меров и допусков прокатываемого профиля, что объясняет­ся различными коэффициентами температурного расшире­ния металлов и сплавов при нагревании. Например, разме­ры чистовых калибров для горячей прокатки стальных профилей должны быть в 1,010-1,015 раза больше разме­ров готовых профилей.

Размеры калибров во время про­катки увеличиваются, что обусловлено их выработкой. При достижении размеров, равных номинальным плюс допуск, калибр становится непригодным для дальнейшей работы и его заменяют новым. Поэтому чем больше допуск на раз­меры профиля, тем больше срок службы калибров, а сле­довательно, и производительность станов. Между тем уве­личенный допуск приводят к излишней затрате металла на каждый метр длины выпускаемой продукции. Необходимо стремиться получать профили с размерами, отклоняющи­мися от номинальных в меньшую сторону.

На практике строят калибры не плюсовыми, а по средним допускам или даже с некоторым минусом. Усовершенствование оборудо­вания прокатных станов, улучшение технологии производ­ства и внедрение автоматической аппаратуры для настрой­ки валков будут способствовать выпуску прокатной про­дукции с повышенной точностью.

ГОСТ 2590-71 предусматривает производство круглой стали диаметром от 5 до 250 мм.

Прокатку этого профиля в зависимости от марки стали и размеров осуществляют по-разному (рис. 116).

Способы 1 и 2 отличаются вариантами получения предчистового квадрата (квадрат точно зафиксирован по диагонали и имеется возможность регулировать высоту). Способ 2 является универсальным, так как позволяет получать ряд смежных размеров круглой стали (рис. 117). Способ 3 состоит в том, что предчистовой овал можно заменять десятиугольником. Этот способ применяют для прокатки крупных кругов. Способ 4 сходен со способом 2 и отличается от него только формой ребрового калибра. Отсутствие боковых стенок в этом калибре способствует лучшему удалению окалины. Так как данный способ позволяет широко регулировать размеры полосы, выходящей из ребрового калибра, его также называют универсальной калибровкой. Способы 5 и 6 отличаются от остальных более высокими вытяжками и большей устойчивостью овалов в проводках. Однако такие калибры требуют точной настройки стана, так как уже при небольшом избытке металла происходит их переполнение и образование заусенцев. Способы 7-10 основаны на применении системы калибровки овал - круг.

Сравнение возможных способов получения круглой стали показывает, что способы 1-3 позволяют в большинстве случаев прокатывать весь сортамент круглой стали. Прокатка качественной стали должна проводиться по способам 7-10. Способ 9 как бы промежуточный между системами овал - круг и овал - овал, наиболее удобен в смысле регулирования и настройки стана, а также предупреждения закатов.

Во всех рассмотренных способах прокатки круглой стали форма чистового и предчистового калибров остается почти неизменной, что способствует установлению общих закономерностей поведения металла в этих калибрах для всех случаев прокатки.

Построение чистового калибра для круглой стали осуществляют следующим образом.

Определяют расчетный диаметр калибра (для горячего профиля при прокатке на минус) d г = (1,011÷1,015)d х - часть допуска +0,01 d х, где 0,01d х,- увеличение диаметра по указанным выше причинам; d х = (d 1 +d 2 /2) - диаметр круглого профиля в холодном состоянии. Практически, при расчетах второй и третий члены правой части равенства можно считать примерно одинаковыми, тогда

d г = (1,011÷1,015)(d 1 +d 2)/2,

где d 1 , d 2 - максимальная и минимальная допустимые величины диаметра по ГОСТ 2590-71 (табл. 11).

В зависимости от размера прокатываемого круга выбирают следующие углы наклона касательной α:

Принимаем величину зазора t (по данным прокатки), мм:

По полученным данным вычерчивают калибр.

Пример . Построить чистовой калибр для прокатки круглой стали диаметром 25 мм.

  1. Определим расчетный диаметр калибра (для горячего профиля) по уравнению выше.
    Находим из таблицы: d 1 =25,4 мм, d 2 = 14,5 мм; откуда d г = 1,013 (25,4+24,5)/2=25,4 мм.
  2. Выбираем α=26°35′.
  3. Принимаем зазор между валками t=3 мм.
  4. По полученным данным вычерчиваем калибр.

Предчистовые калибры для круга конструируют с учетом точности, предъявляемой к готовому профилю. Чем больше форма овала приближается к форме круга, тем точнее получается готовый круглый профиль. Теоретически наиболее подходящей формой профиля для получения правильного круга является эллипс. Однако такой профиль довольно затруднительно удерживать при входе в чистовой круглый калибр, поэтому применяют его сравнительно редко.

Плоские овалы хорошо удерживаются проводками и, кроме того, обеспечивают большие обжатия. Но чем тоньше овал, тем ниже точность получаемого круглого профиля. Это объясняется степенью уширения возникающей при обжатии. Уширение пропорционально обжатию: где малые обжатия, там и малое уширение. Таким образом, при малых обжатиях овала весьма незначительны возможности колебания размеров в круглом калибре. Однако обратное явление справедливо лишь для случая, когда применяют большой овал и большую вытяжку. Овал для малых размеров круглой стали по своей форме близок к форме круга, что дает возможность применять овал одинарной кривизны. Профиль этого овала очерчивают только одним радиусом.

Для круглых профилей средних и больших размеров овалы, очерченные одним радиусом, оказываются чересчур вытянутыми по большой оси и вследствие этого не обеспечивают надежного захвата полосы валками. Применение острых овалов, помимо того, что не обеспечивает получения точного круга, вредно отражается на стойкости круглого калибра, особенно в выходной клети стана. Необходимость частых замен валков резко снижает производительность стана, а быстрая выработка калибров приводит к появлению вторых сортов, а иногда и брака.

Изучение причин и механизма выработки калибров, произведенных Н. В. Литовченко, показало, что острые кромки овала, которые остывают быстрее, чем остальные части полосы, обладают значительным сопротивлением деформации. Эти кромки, входя в калибр валков чистовой клети, действуют на дно калибра как абразив. Жесткие кромки в вершинах овала образуют на дне калибра ложбинки, которые приводят к образованию выступов на полосе по всей ее длине. Поэтому для круглых профилей диаметром 50- 80 мм и выше более точное выполнение профиля достигается применением двух- и трехрадиусных овалов. Они имеют примерно ту же толщину, что и овал, очерченный одним радиусом, но благодаря применению дополнительных малых радиусов кривизны ширина овала уменьшается.

Подобные овалы достаточно плоские для удержания их в проводках и обеспечивают надежный захват, а более округленный контур овала, приближающийся по своей форме к форме эллипса, создает благоприятные условия для равномерной деформации по ширине полосы в круглом калибре.

Плоские виды проката (листы, полосы) обычно прокатывают в гладких цилиндрических валках. Заданная толщина проката достигается уменьшением межвалкового зазора. Прокатку сортовых профилей осуществляют в калиброванных валках, т.е. валках, имеющих кольцевые проточки, соответствующие конфигурации раската последовательно от заготовки до готового профиля.

Кольцевой вырез в одном валке называют ручьем, а просвет между двумя ручьями в паре валков, расположенных друг над другом с учетом зазора между ними - калибром (рис.8.1).

Обычно в качестве исходного материала используют заготовку квадратного или прямоугольного сечения. В задачу калибровки входит определение формы, размеров и количества промежуточных (переходных) сечений раската от заготовки до готового профиля, а также порядка расположения калибров в валках. Калибровкой валков называется система последовательно расположенных калибров, обеспечивающих получение прокатных изделий заданной формы и размеров.

Граница ручьев с обеих сторон называется разъемом или зазором калибра. Он составляет 0,5…1,0% от диаметра валков. Зазор предусматривают для компенсации упругих деформаций элементов рабочей клети, возникающих под воздействием силы прокатки (т.н. отдача, пружина клети). При этом межосевое расстояние увеличивается от долей миллиметра на листовых станах до 5…10 мм - на обжимных. Поэтому при настройке зазор между валками уменьшают на величину отдачи.

Уклон боковых граней калибра к вертикали называется выпуском калибра . Наличие уклона способствует центровке раската в калибре, облегчает его прямолинейный выход из валков, создает простор на уширение металла, обеспечивает возможность восстановления калибра при переточках (рис.8.2). Величину выпуска определяют отношением горизонтальной проекции боковой грани калибра к высоте ручья и выражают в процентах. Для ящичных калибров выпуск составляет 10…25%, для черновых фасонных - 5…10%, для чистовых - 1,0…1,5%.

В - ширина калибра у разъема, b - ширина калибра в глубине ручья, h к - высота калибра, h р - высота ручья, S - зазор калибра.

Расстояние между осями двух смежных валков называется средним или начальным диаметром валков - D c , т.е. это воображаемые диаметры валков, окружности которых соприкасаются по образующей. В понятие средний диаметр входит зазор между валками.

Средняя линия валков - это горизонтальная линия, делящая пополам расстояние между осями двух валков, т.е. это линия соприкосновения воображаемых окружностей двух валков равного диаметра.

Нейтральная линия калибра - для симметричных калибров это горизонтальная ось симметрии; для несимметричных калибров нейтральную линию находят аналитически, например, путем нахождения центра тяжести. Горизонтальная линия, проходящая через него, делит площадь калибра пополам (рис.8.3). Нейтральная линия калибра определяет положение линии (оси) прокатки.


Катающий (рабочий) диаметр валков - это диаметр валков по рабочей поверхности калибра: . В калибрах с криволинейной или ломаной поверхностью катающий диаметр определяют как разницу и , где - средняя высота, равная отношению , - площадь калибра (рис.8.4).

Идеальным представляется вариант, когда нейтральная линия калибра располагается на средней линии, т.е. они совпадают. Тогда и сумма моментов сил, действующих на полосу со стороны верхнего и нижнего валков, одинакова. При таком расположении полоса должна выходить из валков строго горизонтально по оси прокатки. В реальном процессе прокатки условия на контактных поверхностях металла с верхним и нижним валком различны и передний конец полосы непредвиденно может уйти вверх или вниз. Чтобы избежать подобной ситуации, полосу принудительно изгибают чаще вниз на проводку. Проще всего это сделать за счет разницы катающих диаметров валков, которая называется давлением и выражается в миллиметрах - DD , мм. Если , имеет место верхнее давление, если - нижнее.

В этом случае нейтральная линия калибра смещается со средней линией на величину х (см. рис.8.1) и , а . Вычитая второе равенство из первого, получим . Откуда . Зная и можно легко определить начальные и .

Например, мм и мм. Тогда мм и мм.

Обычно на сортовых станах применяют верхнее давление примерно 1% от . На блюмингах обычно применяют нижнее давление величиной 10…15 мм.

В валках калибры разделяют друг от друга буртами. Во избежание концентрации напряжений в валках и раскате грани калибров и буртов спрягают радиусами. В глубине ручья , а у разъема .

8.2 Классификация калибров

Калибры классифицируют по нескольким признакам: по назначению, по форме, по расположению в валках.

По назначению различают обжимные (вытяжные), черновые (подготовительные), предчистовые и чистовые (отделочные) калибры.

Обжимные калибры используют для вытяжки раската за счет уменьшения площади его поперечного сечения обычно без изменения формы. К ним относят ящичные (прямоугольные и квадратные), стрельчатые, ромбические, овальные и квадратные (рис.8.5).

Черновые калибры предназначены к вытяжке раската с одновременным формированием поперечного сечения ближе к форме готового профиля.

Предчистовые калибры непосредственно предшествуют чистовым и в решающей мере определяют получение готового профиля заданной формы и размеров.

Чистовые калибры придают окончательную форму и размеры профилю в соответствии с требованиями ГОСТ с учетом термической усадки.

По форме калибры делят на простые и сложные (фасонные). К простым калибрам относят прямоугольные, квадратные, овальные и пр., к фасонным - угловые, балочные, рельсовые и др.

По расположению в валках различают закрытые и открытые калибры. К открытым относят калибры, у которых разъемы находятся в пределах калибра, а сам калибр образуется ручьями, врезанными в оба валка (см. рис.8.5).

К закрытым относят калибры, у которых разъемы находятся вне пределов калибра, а сам калибр образуется врезом в одном валке и выступом в другом (рис.8.6).

В зависимости от размеров сечения профиля, диаметра валков, типа стана и пр. применяют вытяжные калибры в различных сочетаниях. Такие сочетания называют системами калибров.

8.3 Системы вытяжных калибров

Систему ящичных (прямоугольных) калибров применяют главным образом при прокатке прямоугольных и квадратных заготовок со стороной сечения более 150 мм на блюмингах, обжимных и непрерывных станах, в черновых клетях сортовых станов (рис.8.7). Достоинством системы являются:

-

возможность использования одного и того же калибра для прокатки заготовок различных исходных и конечных сечений. За счет изменения положения верхнего валка меняются размеры калибра (рис.8.8);

Сравнительно небольшая глубина вреза ручья;

Хорошие условия для схода окалины с боковых граней;

Равномерная деформация по ширине заготовки.

К недостаткам этой системы калибров можно отнести невозможность получения заготовок правильной геометрической формы из-за наличия уклонов боковых граней калибров, относительно низкие коэффициенты вытяжек (до 1.3), односторонняя деформация раската.

Систему ромб-квадрат (см. рис.8.7-в) используют в заготовочных и черновых клетях сортовых станов в качестве переходной от системы ящичных калибров для получения заготовок со стороной квадрата менее 150 мм. Достоинством системы является возможность получения квадратов правильной геометрической формы, значительные разовые вытяжки (до 1.6). Недостатком системы является глубокие врезы в валки, совпадения ребер ромба и квадрата, что способствует их быстрому охлаждению.

Система квадрат-овал (см. рис.8.7-г) предпочтительна для получения заготовки со стороной сечения менее 75 мм. Используется в черновых и предчистовых клетях сортовых станов. Обеспечивает вытяжки до 1.8 за проход, малый врез овального калибра в валки, систематическое обновление углов раската, что способствует более равномерному распределению температуры, устойчивость раскатов в калибрах.

Кроме названных применяют системы ромб-ромб, овал-круг, овал-овал и др.

8.4 Схемы калибровки простых профилей (квадратных и круглых)

Черновые калибры валков для прокатки квадратных профилей можно выполнять в любой системе, но последние три калибра предпочтительно в системе ромб-квадрат. Угол при вершине ромба принимают до 120 0 . Иногда для лучшего выполнения углов квадрата угол у самой вершины ромба уменьшают до прямого.

При прокатке квадратов со стороной до 25 мм чистовой калибр строят в виде геометрически правильного квадрата, а при стороне свыше 25мм - горизонтальную диагональ принимают на 1…2% больше вертикальной из-за разницы температур.

Черновые калибры для прокатки круглых профилей также выполняют в любой системе, а последние три калибра - в системе квадрат-овал-круг. Сторону предчистового квадрата для небольших кругов принимают равной диаметру чистового круга, а для средних размеров - в 1,1 раза больше диаметра круга.

Чистовые калибры для кругов диаметром менее 25 м выполняют в виде геометрически правильного круга, а для кругов диаметром более 25 мм горизонтальную ось применяют на 1…2% больше вертикальной. Иногда вместо овала, оформленного одним радиусом, применяют плоский овал для большей устойчивости раската в круглом калибре.

На рис.8.9 представлены схемы калибровки валков стана 500, на которых приведены рассмотренные выше системы вытяжных калибров в черновых клетях, калибровки квадратных, круглых и других профилей.

8.5 Особенности калибровки фланцевых профилей

,

где а г - размер чистового профиля при температуре конца прокатки,

а х - стандартный размер профиля;

- минусовый допуск на размер а х ;

к - коэффициент термического расширения (усадки), равный 1,012…1,015.

Для крупных профилей, у которых допуск заведомо превышает величину термической усадки, расчет калибровки ведут на холодный профиль.

3. С целью достижения максимальной производительности черновые калибры рассчитывают с учетом максимальных углов захвата с последующим уточнением по прочности валков, мощности двигателя и пр. В чистовых и предчистовых калибрах режим обжатий определяют, исходя из необходимости достижения возможно высокой точности профиля и малого износа валков, т.е. при низких значениях коэффициента вытяжки. Обычно в чистовых калибрах m = 1,05…1,15 , в предчистовых m = 1,15…1,25.

Общее число проходов при прокатке на реверсивных станах, в клетях трио, на станах линейного типа должно быть нечетным, чтобы последний проход был в прямом направлении.

Система овал-круг

Рисунок 1.8.Схема прокатки металла в системе калибров

«овал-круг».

Система является частным случаем системы «овал-реб-ровой овал» и, при необходимости, позволяет создать «универсальность» калибровки, обеспечивающую получение круглых профилей стандартных диаметров из промежуточных рабочих клетей (по ходу прокатки металла на стане), что уменьшает простои стана на перевалки. Однако «универсальность» систем калибровок валков несколько усложняет выполнение режима обжатий металла на стане, что в какой-то степени можно отнести к недостаткам системы. Низкая устойчивость однорадиусного овала в круглом калибре препятствует прокатке металла с сохранением высоких значений частных «вытяжек» металла и величина средней «вытяжки» металла в системе «овал-круг» составляет (). Систему калибров не рационально применять как вытяжную, хотя она незаменима в качестве чистовой, что успешно реализуется на стане 350 ОЭМК.


Некоторые элементы калибров простой формы являются общими для всех типов калибров.

Зазор между валками (буртами валков), . Под действием усилий со стороны прокатываемого металла расстояние между валками увеличивается за счет выборки зазоров в деталях клети и упругой деформации клети. При этом высота калибра увеличится. Поэтому чертеж калибра должен отображать его форму и размеры в момент прокатки полосы, то есть вместе с зазором (рисунок 5.1).

Зазор позволяет при прокатке изменять высоту калибра, тем самым изменять профиль прокатываемого металла. При большом зазоре зона контакта металла и валков мала, контур калибра получается незамкнутым, поэтому ухудшается исполнение размеров и формы проката. По этой причине зазоры в чистовых калибрах должны быть минимальными.

Величина зазора принимается в долях от номинального диаметра валков (таблица 1.2.) или высоты калибра (высоты полосы ).

Таблица 1.2. Минимальные зазоры между буртами валков

Группа клетей мелкосортной (среднесортной) и проволочной линии стана 350 №клетей , мм
Черновая группа
I промежуточная
II промежуточная
Чистовая
Чистовой блок

Рисунок 1.9. Схема построения и типовые элементы калибра: а – геометрическая фигура образующая калибр и контуры поверхностей пары гладких валков (здесь контуры представляют собой две сплошные тонкие линии); б – ручьи валков с закруглениями; в – положение и размеры прокатываемой полосы; г – окончательная схема калибра.

Ширина калибра представляет собой горизонтальный, относительно оси валка, характерный размер (далее горизонтальность и вертикальность будут подразумеваться относительно оси валка) геометрической фигуры образующей калибр (рисунок 1.9.).



Высота калибра - характерный вертикальный размер геометрической фигуры образующей калибр (рисунок 1.9.).

Ширина вреза калибра - это ширина геометрической фигуры образующей калибр на уровне пересечения с линией бурта валка (рисунок 1.9.).

Глубина вреза калибра - это расстояние от бурта валка до нижней точки калибра (рисунок 1.9.).

Радиусы закруглений по дну калибра и по буртам выражают обычно в долях высоты калибра. Закруглениями выполняется плавный переход в местах резкого изменения контура калибра либо на границе бурт-калибр (рисунок 1.9.). Закругления необходимы для снижения концентраций напряжений в элементах валка.

Ширина бурта между калибрами (торцевого бурта)– горизонтальный размер не проточенной части бочки валка между соседними калибрами (между последним калибром и краем рабочей поверхности валка).

Ширина бурта между калибрами:

Ширина торцевого бурта:

, (1.4)

где - длина бочки валка (приложение 1)

Число ручьев на бочке валка;

В выражении (1.4) варьируются две величины: . Полученное значение должно удовлетворять условию (1.5). Таким образом, помимо нахождения размеров буртов, осуществляется подбор числа ручьев на бочке .

Выпуск калибра . Для обеспечения свободного выхода полосы из валков без защемления, ширина ручья должна увеличиваться от дна к центру калибра. Поэтому боковые стенки калибра делаются наклонными по отношению к контуру геометрической фигуры образующей калибр. Тангенс угла наклона называется выпуском калибра. Иногда выпуск калибра выражают в процентах.

Высота полосы - вертикальный характерный размер выходящей из валков полосы.

Ширина полосы - горизонтальный характерный размер выходящей из валков полосы.

Притупление полосы у разъема калибра (рисунок 1.9) показывает вертикальный размер свободной от контакта с валками части прокатываемой полосы.

Ширина и притупление полосы являются дополнительными геометрически наглядными параметрами, описывающими важную характеристику прокатки в калибрах - степень заполнения калибра металлом . Степень заполнения определяется по формуле.

© nvuti-info.ru, 2024
Новости бизнеса, дизайна, красоты, строительства, финансов