Производная функции e x. Производная e в степени x и показательной функции

04.10.2021

Доказательство и вывод формул производной натурального логарифма и логарифма по основанию a. Примеры вычисления производных от ln 2x, ln 3x и ln nx. Доказательство формулы производной логарифма n-го порядка методом математической индукции.

Содержание

См. также: Логарифм - свойства, формулы, график
Натуральный логарифм - свойства, формулы, график

Вывод формул производных натурального логарифма и логарифма по основанию a

Производная натурального логарифма от x равна единице, деленной на x:
(1) (ln x)′ = .

Производная логарифма по основанию a равна единице, деленной на переменную x, умноженную на натуральный логарифм от a :
(2) (log a x)′ = .

Доказательство

Пусть есть некоторое положительное число, не равное единице. Рассмотрим функцию, зависящую от переменной x , которая является логарифмом по основанию :
.
Эта функция определена при . Найдем ее производную по переменной x . По определению, производная является следующим пределом:
(3) .

Преобразуем это выражение, чтобы свести его к известным математическим свойствам и правилам. Для этого нам нужно знать следующие факты:
А) Свойства логарифма . Нам понадобятся следующие формулы:
(4) ;
(5) ;
(6) ;
Б) Непрерывность логарифма и свойство пределов для непрерывной функции:
(7) .
Здесь - некоторая функция, у которой существует предел и этот предел положителен.
В) Значение второго замечательного предела:
(8) .

Применяем эти факты к нашему пределу. Сначала преобразуем алгебраическое выражение
.
Для этого применим свойства (4) и (5).

.

Воспользуемся свойством (7) и вторым замечательным пределом (8):
.

И, наконец, применим свойство (6):
.
Логарифм по основанию e называется натуральным логарифмом . Он обозначается так:
.
Тогда ;
.

Тем самым мы получили формулу (2) производной логарифма.

Производная натурального логарифма

Еще раз выпишем формулу производной логарифма по основанию a :
.
Эта формула имеет наиболее простой вид для натурального логарифма, для которого , . Тогда
(1) .

Из-за такой простоты, натуральный логарифм очень широко используется в математическом анализе и в других разделах математики, связанных с дифференциальным исчислением. Логарифмические функции с другими основаниями можно выразить через натуральный логарифм, используя свойство (6):
.

Производную логарифма по основанию можно найти из формулы (1), если вынести постоянную за знак дифференцирования:
.

Другие способы доказательство производной логарифма

Здесь мы предполагаем, что нам известна формула производной экспоненты:
(9) .
Тогда мы можем вывести формулу производной натурального логарифма, учитывая, что логарифм является обратной функцией к экспоненте.

Докажем формулу производной натурального логарифма, применив формулу производной обратной функции :
.
В нашем случае . Обратной функцией к натуральному логарифму является экспонента:
.
Ее производная определяется по формуле (9). Переменные можно обозначить любой буквой. В формуле (9), заменим переменную x на y:
.
Поскольку , то
.
Тогда
.
Формула доказана.


Теперь докажем формулу производной натурального логарифма с помощью правила дифференцирования сложной функции . Поскольку функции и являются обратными друг к другу, то
.
Дифференцируем это уравнение по переменной x :
(10) .
Производная от икса равна единице:
.
Применяем правило дифференцирования сложной функции :
.
Здесь . Подставим в (10):
.
Отсюда
.

Пример

Найти производные от ln 2x, ln 3x и ln nx .

Исходные функции имеют похожий вид. Поэтому мы найдем производную от функции y = ln nx . Затем подставим n = 2 и n = 3 . И, тем самым, получим формулы для производных от ln 2x и ln 3x .

Итак, ищем производную от функции
y = ln nx .
Представим эту функцию как сложную функцию, состоящую из двух функций:
1) Функции , зависящей от переменной : ;
2) Функции , зависящей от переменной : .
Тогда исходная функция составлена из функций и :
.

Найдем производную от функции по переменной x:
.
Найдем производную от функции по переменной :
.
Применяем формулу производной сложной функции .
.
Здесь мы подставили .

Итак, мы нашли:
(11) .
Мы видим, что производная не зависит от n . Этот результат вполне естественен, если преобразовать исходную функцию, применяя формулу логарифма от произведения:
.
- это постоянная. Ее производная равна нулю. Тогда по правилу дифференцирования суммы имеем:
.

; ; .

Производная логарифма модуля x

Найдем производную от еще одной очень важной функции - натурального логарифма от модуля x :
(12) .

Рассмотрим случай . Тогда и функция имеет вид:
.
Ее производная определяется по формуле (1):
.

Теперь рассмотрим случай . Тогда и функция имеет вид:
,
где .
Но производную этой функции мы также нашли в приведенном выше примере. Она не зависит от n и равна
.
Тогда
.

Объединяем эти два случая в одну формулу:
.

Соответственно, для логарифма по основанию a , имеем:
.

Производные высших порядков натурального логарифма

Рассмотрим функцию
.
Мы нашли ее производную первого порядка:
(13) .

Найдем производную второго порядка:
.
Найдем производную третьего порядка:
.
Найдем производную четвертого порядка:
.

Можно заметить, что производная n-го порядка имеет вид:
(14) .
Докажем это методом математической индукции.

Доказательство

Подставим в формулу (14) значение n = 1:
.
Поскольку , то при n = 1 , формула (14) справедлива.

Предположим, что формула (14) выполняется при n = k . Докажем, что из этого следует, что формула справедлива при n = k + 1 .

Действительно, при n = k имеем:
.
Дифференцируем по переменной x :

.
Итак, мы получили:
.
Эта формула совпадает с формулой (14) при n = k + 1 . Таким образом, из предположения, что формула (14) справедлива при n = k следует, что формула (14) справедлива при n = k + 1 .

Поэтому формула (14), для производной n-го порядка, справедлива для любых n .

Производные высших порядков логарифма по основанию a

Чтобы найти производную n-го порядка от логарифма по основанию a , нужно выразить его через натуральный логарифм:
.
Применяя формулу (14), находим n-ю производную:
.

См. также:

Представлен вывод производных первого порядка арксинуса (arcsin x)′ и арккосинуса (arccos x)′. Для каждой из функций, вывод дан двумя способами.

Содержание

См. также: Арксинус, арккосинус - свойства, графики, формулы

Здесь мы полагаем, что нам известны производные синуса и косинуса. Далее мы выводим производные арксинуса и арккосинуса, учитывая, что они являются обратными функциями к синусу и косинусу, соответственно.

Вывод производной арксинуса

Рассмотрим функцию арксинус от переменной x :
y = arcsin x .
- 1 до + 1 :
.
- π/2 до + π/2 :
.
Функция арксинус является обратной к функции синус:
x = sin y .

Для определения производной арксинуса, применим формулу производной обратной функции:
(1) .

Производная синуса нам известна. Обычно ее записывают в следующем виде:
.
Здесь .
,
где .
Подставим в формулу (1):
(2) .
Здесь
y = arcsin x ;
x = sin y .

Теперь выразим правую часть формулы (2) через переменную x . Для этого заметим, что поскольку , то . Тогда
.
Подставим в формулу (2):
.

Тем самым мы вывели формулу производной арксинуса:
.

Второй способ

Поскольку арксинус и синус являются обратными функциями по отношению друг к другу, то
(3) .
Здесь .
Продифференцируем это уравнение по переменной x . То есть найдем производные левой и правой части и приравняем их друг к другу:
(4) .

Производную правой части находим из таблицы производных :
.

Производную левой части находим по формуле производной сложной функции :
.
Здесь .
Поскольку , то . Поэтому
.
Тогда
.

Подставим в (4):
.
Отсюда
.

Вывод производной арккосинуса

Используя связь между арксинусом и арккосинусом

Производную арккосинуса легко получить из производной арксинуса, если воспользоваться связью между арксинусом и арккосинусом :
.
Отсюда
.

По формуле производной обратной функции

Также производную арккосинуса можно найти по формуле производной обратной функции.

Рассмотрим функцию арккосинус:
y = arccos x .
Здесь независимая переменная x может принимать значения от - 1 до + 1 :
.
Зависимая переменная y может принимать значения от 0 до π :
.
Функция арккосинус является обратной к функции косинус:
x = cos y .

Применим формулу производной обратной функции:
(1) .

Производная косинуса нам известна:
.
Здесь .
Поменяем местами обозначения переменных x и y . Тогда
,
где .
Подставим в формулу (1):
(5) .
Здесь
y = arccos x ;
x = cos y .

Теперь выразим правую часть формулы (5) через переменную x . Поскольку , то . Тогда
.
Подставим в формулу (5):
.

Таким образом, мы вывели формулу производной арккосинуса:
.

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200...), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

А проверить решение задачи на производную можно на .

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Проверить решение задачи на производную можно на калькуляторе производных онлайн .

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .

Основа доказательства ― определение предела функции. Можно воспользоваться другим способом, используя тригонометрические формулы приведения для косинуса и синуса углов. Выразить одну функцию через другую - косинус через синус, и продифференцировать синус со сложным аргументом.

Рассмотрим первый пример вывода формулы (Cos(х))"

Даем ничтожно малое приращение Δх аргументу х функции у = Cos(х). При новом значении аргумента х+Δх получаем новое значение функции Cos(х+Δх). Тогда приращение функции Δу будет равно Cos(х+Δx)-Cos(x).
Отношение же приращения функции к Δх будет таким: (Cos(х+Δx)-Cos(x))/Δх. Проведем тождественные преобразования в числителе получившейся дроби. Вспомним формулу разности косинусов углов, результатом будет произведение -2Sin(Δх/2) умножить на Sin(х+Δх/2). Находим предел частного lim этого произведения на Δх при Δх, стремящемся к нулю. Известно, что первый (его называют замечательным) предел lim(Sin(Δх/2)/(Δх/2)) равен 1, а предел -Sin(х+Δх/2) равен -Sin(x) при Δx, стремящемся к нулю.
Запишем результат: производная (Cos(х))" равна - Sin(х).

Некоторым больше нравится второй способ вывода той же формулы

Из курса тригонометрии известно: Cos(х) равно Sin(0,5·∏-х), аналогично Sin(х) равно Cos(0,5·∏-x). Тогда дифференцируем сложную функцию - синус дополнительного угла (вместо косинуса икс).
Получим произведение Cos(0,5·∏-х)·(0,5·∏-х)", потому что производная синуса х равна косинусу х. Обращаемся ко второй формуле Sin(х) = Cos(0,5·∏-x) замены косинуса на синус, учитываем, что (0,5·∏-х)" = -1. Теперь получаем -Sin(x).
Итак, найдена производная косинуса, у" = -Sin(х) для функции у = Cos(х).

Часто используемый пример, где употребляется производная косинуса. Функция y = Cos 2 (x) сложная. Находим сначала дифференциал степенной функции с показателем 2, это будет 2·Cos(x), затем умножаем его на производную (Cos(x))", которая равна -Sin(х). Получаем y" = -2·Cos(х)·Sin(x). Когда применим формулу Sin(2·х), синуса двойного угла, получим окончательный упрощенный
ответ y" = -Sin(2·х)

Гиперболические функции

Применяются при изучении многих технических дисциплин: в математике, например, облегчают вычисления интегралов, решение Выражаются они через тригонометрические функции с мнимым аргументом, так, гиперболический косинус ch(х) = Cos(i·х), где i ― мнимая единица, гиперболический синус sh(x) = Sin(i·x).

Производная гиперболического косинуса вычисляется достаточно просто.
Рассмотрим функцию у = (e x +e -x)/2, это и есть гиперболический косинус ch(х). Используем правило нахождения производной суммы двух выражений, правило выноса постоянного множителя (Const) за знак производной. Второе слагаемое 0,5·е -х ― сложная функция (ее производная равна -0,5·е -х), 0,5·е х ― первое слагаемое. (ch(х)) "=((e х +e - x)/2)" можно записать по другому: (0,5·e х +0,5·е - х)" = 0,5·e х -0,5·e - х, потому что производная (e - x)" равна -1, умнноженная на e - x . Получилась разность, а это есть гиперболический синус sh(x).
Вывод: (ch(х))" = sh(x).
Рассмитрим на примере, как вычислить производную функции у = ch(x 3 +1).
По гиперболического косинуса со сложным аргументом у" = sh(x 3 +1)·(x 3 +1)", где (x 3 +1)" = 3·x 2 +0.
Ответ: производная данной функции равна 3·х 2 ·sh(х 3 +1).

Производные рассмотренных функций у = ch(х) и y = Cos(х) табличные

При решении примеров нет необходимости каждый раз дифференцировать их по предложенной схеме, достаточно использовать вывод.
Пример. Продифференцировать функцию у = Cos(x)+Cos 2 (-x)-Ch(5·х).
Легко вычислить (воспользуемся табличными данными), у" = -Sin(x)+Sin(2·х)-5·Sh(5·х).


Дата: 20.11.2014

Что такое производная?

Таблица производных.

Производная - одно из главных понятий высшей математики. В этом уроке мы познакомимся с этим понятием. Именно познакомимся, без строгих математических формулировок и доказательств.

Это знакомство позволит:

Понимать суть несложных заданий с производной;

Успешно решать эти самые несложные задания;

Подготовиться к более серьёзным урокам по производной.

Сначала - приятный сюрприз.)

Строгое определение производной основано на теории пределов и штука достаточно сложная. Это огорчает. Но практическое применение производной, как правило, не требует таких обширных и глубоких знаний!

Для успешного выполнения большинства заданий в школе и ВУЗе достаточно знать всего несколько терминов - чтобы понять задание, и всего несколько правил - чтобы его решить. И всё. Это радует.

Приступим к знакомству?)

Термины и обозначения.

В элементарной математике много всяких математических операций. Сложение, вычитание умножение, возведение в степень, логарифмирование и т.д. Если к этим операциям добавить ещё одну, элементарная математика становится высшей. Эта новая операция называется дифференцирование. Определение и смысл этой операции будут рассмотрены в отдельных уроках.

Здесь же важно понять, что дифференцирование - это просто математическая операция над функцией. Берём любую функцию и, по определённым правилам, преобразовываем её. В результате получится новая функция. Вот эта новая функция и называется: производная.

Дифференцирование - действие над функцией.

Производная - результат этого действия.

Так же, как, например, сумма - результат сложения. Или частное - результат деления.

Зная термины, можно, как минимум, понимать задания.) Формулировки бывают такие: найти производную функции; взять производную; продифференцировать функцию; вычислить производную и т.п. Это всё одно и то же. Разумеется, бывают и более сложные задания, где нахождение производной (дифференцирование) будет всего лишь одним из шагов решения задания.

Обозначается производная с помощью штришка вверху справа над функцией. Вот так: y" или f"(x) или S"(t) и так далее.

Читается игрек штрих, эф штрих от икс, эс штрих от тэ, ну вы поняли...)

Штрих также может обозначать производную конкретной функции, например: (2х+3)" , (x 3 )" , (sinx)" и т.д. Часто производная обозначается с помощью дифференциалов, но такое обозначение в этом уроке мы рассматривать не будем.

Предположим, что понимать задания мы научились. Осталось всего ничего - научиться их решать.) Напомню ещё раз: нахождение производной - это преобразование функции по определённым правилам. Этих правил, на удивление, совсем немного.

Чтобы найти производную функции, надо знать всего три вещи. Три кита, на которых стоит всё дифференцирование. Вот они эти три кита:

1. Таблица производных (формулы дифференцирования).

3. Производная сложной функции.

Начнём по порядку. В этом уроке рассмотрим таблицу производных.

Таблица производных.

В мире - бесконечное множество функций. Среди этого множества есть функции, которые наиболее важны для практического применения. Эти функции сидят во всех законах природы. Из этих функций, как из кирпичиков, можно сконструировать все остальные. Этот класс функций называется элементарные функции. Именно эти функции и изучаются в школе - линейная, квадратичная, гипербола и т.п.

Дифференцирование функций "с нуля", т.е. исходя из определения производной и теории пределов - штука достаточно трудоёмкая. А математики - тоже люди, да-да!) Вот и упростили себе (и нам) жизнь. Они вычислили производные элементарных функций до нас. Получилась таблица производных, где всё уже готово.)

Вот она, эта табличка для самых популярных функций. Слева - элементарная функция, справа - её производная.

Функция
y
Производная функции y
y"
1 C (постоянная величина) C" = 0
2 x x" = 1
3 x n (n - любое число) (x n)" = nx n-1
x 2 (n = 2) (x 2)" = 2x
4 sin x (sin x)" = cosx
cos x (cos x)" = - sin x
tg x
ctg x
5 arcsin x
arccos x
arctg x
arcctg x
4 a x
e x
5 log a x
ln x (a = e )

Рекомендую обратить внимание на третью группу функций в этой таблице производных. Производная степенной функции - одна из самых употребительных формул, если только не самая употребительная! Намёк понятен?) Да, таблицу производных желательно знать наизусть. Кстати, это не так трудно, как может показаться. Попробуйте решать побольше примеров, таблица сама и запомнится!)

Найти табличное значение производной, как вы понимаете, задание не самое трудное. Поэтому очень часто в подобных заданиях встречаются дополнительные фишки. Либо в формулировке задания, либо в исходной функции, которой в таблице - вроде и нету...

Рассмотрим несколько примеров:

1. Найти производную функции y = x 3

Такой функции в таблице нет. Но есть производная степенной функции в общем виде (третья группа). В нашем случае n=3. Вот и подставляем тройку вместо n и аккуратно записываем результат:

(x 3) " = 3·x 3-1 = 3x 2

Вот и все дела.

Ответ: y" = 3x 2

2. Найти значение производной функции y = sinx в точке х = 0.

Это задание означает, что надо сначала найти производную от синуса, а затем подставить значение х = 0 в эту самую производную. Именно в таком порядке! А то, бывает, сразу подставляют ноль в исходную функцию... Нас же просят найти не значение исходной функции, а значение её производной. Производная, напомню - это уже новая функция.

По табличке находим синус и соответствующую производную:

y" = (sin x)" = cosx

Подставляем ноль в производную:

y"(0) = cos 0 = 1

Это и будет ответ.

3. Продифференцировать функцию:

Что, внушает?) Такой функции в таблице производных и близко нет.

Напомню, что продифференцировать функцию - это просто найти производную этой функции. Если забыть элементарную тригонометрию, искать производную нашей функции достаточно хлопотно. Таблица не помогает...

Но если увидеть, что наша функция - это косинус двойного угла , то всё сразу налаживается!

Да-да! Запомните, что преобразование исходной функции до дифференцирования вполне допускается! И, случается, здорово облегчает жизнь. По формуле косинуса двойного угла:

Т.е. наша хитрая функция есть не что иное, как y = cosx . А это - табличная функция. Сразу получаем:

Ответ: y" = - sin x .

Пример для продвинутых выпускников и студентов:

4. Найти производную функции:

Такой функции в таблице производных нет, разумеется. Но если вспомнить элементарную математику, действия со степенями... То вполне можно упростить эту функцию. Вот так:

А икс в степени одна десятая - это уже табличная функция! Третья группа, n=1/10. Прямо по формуле и записываем:

Вот и всё. Это будет ответ.

Надеюсь, что с первым китом дифференцирования - таблицей производных - всё ясно. Осталось разобраться с двумя оставшимися китами. В следующем уроке освоим правила дифференцирования.

© nvuti-info.ru, 2024
Новости бизнеса, дизайна, красоты, строительства, финансов