Белки, их строение и функции. Аминокислоты в состав природных полипептидов и белков входят Качественные, цветные реакции на белок

17.01.2024


В основе жизнедеятельности клетки лежат биохимические процессы, протекающие на молекулярном уровне и служащие предметом изучения биохимии. Соответственно и явления наследственности и изменчивости тоже связаны с молекулами органических веществ, и в первую очередь с нуклеиновыми кислотами и белками.

Состав белков

Белки представляют собой большие молекулы, состоящие из сотен и тысяч элементарных звеньев - аминокислот. Такие вещества, состоящие из повторяющихся элементарных звеньев - мономеров, называются полимерами. Соответственно белки можно назвать полимерами, мономерами которых служат аминокислоты.

Всего в живой клетке известно 20 видов аминокислот. Название аминокислоты получили из-за содержания в своем составе аминной группы NHy, обладающей основными свойствами, и карбоксильной группы СООН, имеющей кислотные свойства. Все аминокислоты имеют одинаковую группу NH2-СН-СООН и отличаются друг от друга химической группой, называемой радикалом - R. Соединение аминокислот в полимерную цепь происходит благодаря образованию пептидной связи (СО - NH) между карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты. При этом выделяется молекула воды. Если образовавшаяся полимерная цепь короткая, она называется олигопептидной, если длинная - полипептидной.

Строение белков

При рассмотрении строения белков выделяют первичную, вторичную, третичную структуры.

Первичная структура определяется порядком чередования аминокислот в цепи. Изменение в расположении даже одной аминокислоты ведет к образованию совершенно новой молекулы белка. Число белковых молекул, которое образуется при сочетании 20 разных аминокислот, достигает астрономической цифры.

Если бы большие молекулы (макромолекулы) белка располагались в клетке в вытянутом состоянии, они занимали бы в ней слишком много места, что затруднило бы жизнедеятельность клетки. В связи с этим молекулы белка скручиваются, изгибаются, свертываются в самые различные конфигурации. Так на основе первичной структуры возникает вторичная структура - белковая цепь укладывается в спираль, состоящую из равномерных витков. Соседние витки соединены между собой слабыми водородными связями, которые при многократном повторении придают устойчивость молекулам белков с этой структурой.

Спираль вторичной структуры укладывается в клубок, образуя третичную структуру. Форма клубка у каждого вида белков строго специфична и полностью зависит от первичной структуры, т. е. от порядка расположения аминокислот в цепи. Третичная структура удерживается благодаря множеству слабых электростатических связей: положительно и отрицательно заряженные группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, гидрофобные (водоотталкивающие) группы.

Некоторые белки, например гемоглобин, состоят из нескольких цепей, различающихся по первичной структуре. Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой (рис. 2).

В структурах белковых молекул наблюдается следующая закономерность: чем выше структурный уровень, тем слабее поддерживающие их химические связи. Связи, образующие четвертичную, третичную, вторичную структуру, крайне чувствительны к физико-химическим условиям среды, температуре, радиации и т. д. Под их воздействием структуры молекул белков разрушаются до первичной - исходной структуры. Такое нарушение природной структуры белковых молекул называется денатурацией. При удалении денатурирующего агента многие белки способны самопроизвольно восстанавливать исходную структуру. Если же природный белок подвергается действию вьюокой температуры или интенсивному действию других факторов, то он необратимо денатурируется. Именно фактом наличия необратимой денатурации белков клеток объясняется невозможность жизни в условиях очень высокой температуры.

Биологическая роль белков в клетке

Белки, называемые также протеинами (греч. протос - первый}, в клетках животных и растений выполняют многообразные и очень важные функции, к которым можно отнести следующие.

Каталитическая. Природные катализаторы - ферменты представляют собой полностью или почти полностью белки. Благодаря ферментам химические процессы в живых тканях ускоряются в сотни тысяч или в миллионы раз. Под их действием все процессы идут мгновенно в «мягких» условиях: при нормальной температуре тела, в нейтральной для живой ткани среде. Быстродействие, точность и избирательность ферментов несопоставимы ни с одним из искусственных катализаторов. Например, одна молекула фермента за одну минуту осуществляет реакцию распада 5 млн. молекул пероксида водорода (Н202). Ферментам характерна избирательность. Так, жиры расщепляются специальным ферментом, который не действует на белки и полисахариды (крахмал, гликоген). В свою очередь, фермент, расщепляющий только крахмал или гликоген, не действует на жиры.

Процесс расщепления или синтеза любого вещества в клетке, как правило, разделен на ряд химических операций. Каждую операцию выполняет отдельный фермент. Группа таких ферментов составляет биохимический конвейер.

Считают, что каталитическая функция белков зависит от их третичной структуры, при ее разрушении каталитическая активность фермента исчезает.

Защитная. Некоторые виды белков защищают клетку и в целом организм от попадания в них болезнетворных микроорганизмов и чужеродных тел. Такие белки носят название антител. Антитела связываются с чужеродными для организма белками бактерий и вирусов, что подавляет их размножение. На каждый чужеродный белок организм вырабатывает специальные «антибелки» - антитела. Такой механизм сопротивления возбудителям заболеваний называется иммунитетом.

Чтобы предупредить заболевание, людям и животным вводят ослабленные или убитые возбудители (вакцины), которые не вызывают болезнь, но заставляют специальные клетки организма производить антитела против этих возбудителей. Если через некоторое время болезнетворные вирусы и бактерии попадают в такой организм, они встречают прочный защитный барьер из антител.

Гормональная. Многие гормоны также представляют собой белки. Наряду с нервной системой гормоны управляют работой разных органов (и всего организма) через систему химических реакций.

Отражательная. Белки клетки осуществляют прием сигналов, идущих извне. При этом различные факторы среды (температурный, химический, механический и др.) вызывают изменения в структуре белков - обратимую денатурацию, которая, в свою очередь, способствует возникновению химических реакций, обеспечивающих ответ клетки на внешнее раздражение. Эта способность белков лежит в основе работы нервной системы, мозга.

Двигательная. Все виды движений клетки и организма: мерцание ресничек у простейших, сокращение мышц у высших животных и другие двигательные процессы - производятся особым видом белков.

Энергетическая. Белки могут служить источником энергии для клетки. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма.

Транспортная. Белок гемоглобин крови способен связывать кислород воздуха и транспортировать его по всему телу. Эта важнейшая функция свойственна и некоторым другим белкам.

Пластическая. Белки - основной строительный материал клеток (их мембран) и организмов (их кровеносных сосудов, нервов, пищеварительного тракта и др.). При этом белки обладают индивидуальной специфичностью, т. е. в организмах отдельных людей содержатся некоторые, характерные лишь для него, белки-

Таким образом, белки - эти важнейший компонент клетки, без которого невозможно проявление свойств жизни. Однако воспроизведение живого, явление наследственности, как мы увидим позже, связано с молекулярными структурами нуклеиновых кислот. Это открытие - результат новейших достижений биологии. Теперь известно, что живая клетка обязательно обладает двумя видами полимеров-белками и нуклеиновыми кислотами. В их взаимодействии заключены самые глубокие стороны явления жизни.



Белки - природные полипептиды с огромной молекулярной массой. Они входят в состав всех живых организмов и выполняют различные биологические функции.

Строение белка.

У белков существует 4 уровня строения:

  • первичная структура белка - линейная последовательность аминокислот в полипептидной цепи, свернутых в пространстве:
  • вторичная структура белка - конформация полипептидной цепи, т.к. скручивание в пространстве за счет водородных связей между NH и СО группами. Есть 2 способа укладки: α -спираль и β - структура.
  • третичная структура белка - это трехмерное представление закрученной α -спираль или β -структуры в пространстве:

Эта структура образуется за счет дисульфидных мостиков -S-S- между цистеиновыми остатками. В образовании такой структуры участвуют противоположно заряженные ионы.

  • четвертичная структура белка образуется за счет взаимодействия между разными полипептидными цепями:

Синтез белка.

В основе синтеза лежит твердофазный метод, в котором первая аминокислота закрепляется на полимерном носителе, а к ней последовательно подшиваются новые аминокислоты. После полимер отделяют от полипептидной цепи.

Физические свойства белка.

Физические свойства белка определяются строением, поэтому белки делят на глобулярные (растворимые в воде) и фибриллярные (нерастворимые в воде).

Химические свойства белков.

1. Денатурация белка (разрушение вторичной и третичной структуры с сохранением первичной). Пример денатурации - свертывание яичных белков при варке яиц.

2. Гидролиз белков - необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот. Так можно установить количественный состав белков.

3. Качественные реакции:

Биуретовая реакция - взаимодействие пептидной связи и солей меди (II) в щелочном растворе. По окончанию реакции раствор окрашивается в фиолетовый цвет.

Ксантопротеиновая реакция - при реакции с азотной кислотой наблюдается желтое окрашивание.

Биологическое значение белка.

1. Белки - строительный материал, из него построены мышцы, кости, ткани.

2. Белки - рецепторы. Передают и воспринимают сигнал, поступающих от соседних клеток из окружающей среды.

3. Белки играют важную роль в иммунной системе организма.

4. Белки выполняют транспортные функции и переносят молекулы или ионы в место синтеза или накопления. (Гемоглобин переносит кислород к тканям.)

5. Белки - катализаторы - ферменты. Это очень мощные селективные катализаторы, которые ускоряют реакции в миллионы раз.

Есть ряд аминокислот, которые не могут синтезироваться в организме - незаменимые , их получают только с пищей: тизин, фенилаланин, метинин, валин, лейцин, триптофан, изолейцин, треонин.

Под понятием «белок» следует подразумевать активные вещества, имеющие в своем составе заменимые и незаменимые аминокислоты. Именно они способны обеспечить человеческий организм необходимым запасом энергии. Белки поддерживают баланс многих метаболических процессов. Ведь они являются наиболее важной составляющей живых клеток. И необходимо выяснить, белки - это какие продукты?

Полезные свойства

Белок считается одним из наиболее важных элементов для развития костей, мышц, связок и тканей. Описанное вещество помогает организму бороться с различными заболеваниями и инфекциями, улучшая состояние иммунитета. Поэтому человеку необходимо употреблять в пищу белок. В каких продуктах находится оговоренное вещество, будет рассмотрено ниже.

Белок просто необходим для протекания таких процессов, как обмен веществ, пищеварение и кровообращение. Человеку нужно постоянно употреблять данный компонент, чтобы его тело могло вырабатывать гормоны, ферменты и прочие полезные вещества. Недостаточное употребление этого биологического "строительного материала" может спровоцировать уменьшение объема мышц, вызвать слабость, головокружения, дисфункцию сердца и пр. Не допустить этого возможно, лишь четко уяснив: белки - это какие продукты?

Оптимальная доза употребления в сутки

В течение дня человеческому организму необходимо от 0,8 до 2,0 грамм белка на 1 килограмм веса тела. Спортсменам же следует несколько увеличить оговоренную дозу, доведя количество потребляемого протеина до 2-2,5 грамм белка на 1 килограмм веса. Как утверждают специалисты, средний показатель приема вышеназванного вещества за один раз должен равняться 20-30 граммам.

Перед тем как планировать свой рацион, нужно определить: белки - это какие продукты? Удивительно, но вышеназванный компонент можно обнаружить практически в любой пище.

Вся еда содержит Какие продукты ни возьми на анализ, содержание вышеназванных компонентов варьируется лишь в процентном соотношении. Такие показатели обуславливают то, что люди отдают предпочтение той или иной пище.

Итак, белок можно обнаружить практически в любом продукте. Однако в обычной пище, наряду с протеинами, могут содержаться также и жиры с углеводами. Подобный факт играет на руку спортсменам, нуждающимся в большом количестве калорий, однако нежелателен для тех людей, которые стремятся похудеть. Для качественного построения тела требуется немалый объем именно белка.

Типы белковых соединений

В природе белок встречается в двух видах продуктов - в растительных и животных. Протеин классифицируется согласно происхождению. Принимая в пищу лишь растительный белок (в каких продуктах содержится данный компонент, рассмотрим ниже), следует учитывать потребность в достаточно большом количестве еды, обогащенной вышеупомянутым веществом. Эта информация станет полезной вегетарианцам. Его необходимо на 10% больше, нежели при рационе, содержащем животные белки.

В каких продуктах присутствует большое количество нужного вещества? Рассмотрим это.

Животные белки

В каких продуктах содержится вышеназванное вещество? Это пища мясная и молочная. Такие продукты имеют оптимальное количество протеина в своем составе. В них присутствует весь спектр аминокислот незаменимого типа. Сюда следует отнести следующее:

  • птицу;
  • яйца;
  • молоко;
  • сыворотку;
  • морепродукты.

Растительный белок

В каких продуктах имеется данный протеин? К ним относятся бобы, фрукты, а также овощи. Вышеприведенные составляющие рациона являются отличным источником белковых волокон для организма. Однако здесь необходимо отметить, что подобные продукты не обладают в полной степени той ценностью, которой наделена пища животного происхождения.

Питательные ингредиенты, присутствующие в представителях растительного мира, способны оказать положительное воздействие на состояние волос и кожи человека. Фрукты можно есть в сыром виде, использовать их в качестве добавок для салата и пр. Кроме оптимального набора аминокислот, в них присутствуют клетчатка и жиры.

Остановимся на перечне составляющих рациона, в которых находится наибольшее количество оговоренного компонента? Список, приведенный ниже, позволит ответить на этот вопрос.

Рыба и мясные продукты

Начинает наш список животный белок. В каких продуктах - наибольшее его содержание?

  • Рыба морская, речная:

Лососина: имеет повышенную концентрацию белка - 30 грамм на 100 единиц; оказывает положительное воздействие на сердечно-сосудистую систему, а также иммунитет;

Тунец: в 100 граммах озвученного вида рыбы присутствует 24,4 грамма протеина;

Карп: 20 грамм белка;

Сельдь: 15 грамм;

Щука: 18 грамм;

Окунь: 19 грамм;

Хек: 16 грамм.

  • Крольчатина - считается наиболее В ней содержится малое количество жиров. В 200-граммовой порции такого мяса находится 24 грамма чистого белка. Помимо этого, крольчатина богата никотиновой кислотой (примерно 25% от суточной нормы потребления).
  • Говядина постная - больше всего белка здесь содержится в огузке и филейной части. В 200 граммах этого мяса насчитывается около 25 грамм протеина. Коровье мясо также богато линолевой кислотой и цинком.
  • Яичный белок и цельные яйца. Оговоренные продукты характеризуются полным набором аминокислот незаменимого типа. Так, в куриных яйцах насчитывают 11,6 грамм протеина. А в перепелиных - 11,8 грамм. Белок, содержащийся в яйцах, имеет малый процент жира, отлично усваивается. Также данный продукт может похвастать наличием большого количества витаминов и минералов. Помимо этого, в яичном белке имеется немалая доля зеаксантина, лютеина и каротиноидов.
  • Индейка и куриные грудки. В 100-граммовой порции такого мяса содержится примерно 20 грамм белка. Исключением становятся крылышки и ножки. Индейка и курица также являются диетическими продуктами.

Крупы

Белковые соединения, присутствующие в растениях, нельзя причислить к разряду полноценных веществ. Исходя из этого, следует отметить, что наилучшее действие на организм может оказать комбинирование бобовых культур и круп. Подобный прием позволит получить наиболее полный спектр аминокислот.

  • Крупа - состоит из цельных зерен. Их обрабатывают паром, просушивают. И измельчают до консистенции крупы. Встречается несколько сортов подобного продукта, богатых белком:

Гречневая крупа - 12,6 грамм протеина;

Пшено - 11,5 грамм;

Рис - 7 грамм;

Перловая крупа - 9 грамм;

Ячменная крупа - 9,5 грамм.

  • Овсяные хлопья и отруби - способны оказывать благоприятное действие на состояние крови, снижая уровень холестерина в ней. Продукты, изготовленные из подобных ингредиентов, богаты магнием и белками (в 100 г имеется 11 грамм чистого протеина).

Бобовые культуры

Не удивительно, что многие представители дальневосточных народов предпочитают сою и фасоль. Ведь в таких культурах имеется немалое количество белка. При этом в сое практически не присутствуют жиры мононасыщенного типа и холестерин.

  • Бобы - как правило, в такой пище содержатся витамины РР, А, С, В6 и В1, некоторые минералы - фосфор и железо. В половине чашки (100 г) готового продукта насчитывается 100-150 же - около 10 грамм.
  • Чечевица - 24 грамма.
  • Нут - 19 грамм.
  • Соя - 11 грамм.

Молочные продукты

Если говорить о пище, содержащей животный белок (в каких продуктах он имеется, представлено ниже), невозможно не коснуться данной категории:

  • Продукты молочного типа. По усвояемости на первом месте здесь стоят обезжиренные разновидности. Перечислим их:

Простокваша - 3 грамма;

Мацони - 2,9 грамма;

Молоко - 2,8 грамма;

Ряженка - 3 грамма;

Сыры - от 11 до 25 грамм.

Семена и орехи

  • Киноа - злак южноамериканского происхождения, по структуре отдаленно напоминает семена кунжутного дерева. В таком продукте имеется в немалых количествах: магний, железо, медь и марганец. Белковая составляющая находится на отметке 16 грамм.
  • Орехи грецкие - 60 грамм.
  • Семена чиа - 20.
  • Семена подсолнечника - 24.

Фрукты и овощи

Такие составляющие рациона способны похвастать оптимальным соотношением витаминов С и А. В них имеется и селен. Калорийность и жирная составляющая в этих продуктах весьма низкие. Итак, вот основные продукты, имеющие высокое содержание белка:

  • брокколи;
  • перец красный;
  • лук репчатый;
  • спаржа;
  • помидоры;
  • клубника;
  • листовая капуста и пр.

Белки и углеводы

На сегодняшний день существует множество диет. Они, как правило, базируются на правильной комбинации белков, жиров и углеводов. Взять хотя бы диету Аткинса. Это достаточно известный безуглеводный рацион питания. Внимательно изучая рекомендации, каждый читатель задает закономерный вопрос: "Это какие продукты? Белки и углеводы где присутствуют?" Ниже рассмотрим основные продукты с точки зрения содержания данных веществ:

  1. Мясо. В данном продукте совсем нет углеводов, однако сложный процесс его обработки посредством приправ, соли и сахара может несколько изменить его состав в готовом виде. Именно поэтому колбасу, ветчину и другие полуфабрикаты нельзя отнести к еде, богатой оговоренными веществами. Достаточно же высокая концентрация протеинов наблюдается в телятине, индейке, говядине, свинине, баранине, рыбе и пр.
  2. В молоке и всех производных от него продуктах присутствуют моносахариды. Сливки вместе с сырами (жирными) характеризуются малым содержанием углеводов.

Продукты с низким содержанием белка

Пища с невысоким содержанием протеина не может оказать такого благотворного действия на организм, как полноценные ингредиенты. Однако исключать их из рациона полностью не рекомендуется.

Итак, в каких продуктах мало белка:

  • мармелад - 0 грамм;
  • сахар - 0,3 грамма;
  • яблоки - 0,4 грамма;
  • малина - 0,8 грамм;
  • сыроежки необработанные - 1,7 грамма;
  • чернослив - 2,3 грамма.

Продолжать список можно еще очень долго. Здесь же мы выделили наиболее бедную по содержанию белка пищу.

Заключение

Ответив на вопрос "белки - это какие продукты", надеемся, что вы полностью понимаете, насколько важно организму получать сбалансированное питание. Поэтому необходимо помнить, что, как бы ни были полезны белки, в жирах и углеводах человек также нуждается.

СТАТИЧЕСКАЯ БИОХИМИЯ

Глава IV .2.

Белки

Белки – неразветвляющиеся полимеры, минимальная структурная единица которых – аминокислота (АК). Аминокислоты соединены между собой пептидной связью. В природе встречается гораздо больше АК, чем входит в состав животных и растительный белков. Так, множество «небелковых» АК содержится в пептидных антибиотиках или являются промежуточными продуктами обмена белков. В состав белков входит 20 АК в альфа-форме, расположенных в различной, но строго определенной для каждого белка последовательности.

Классификация АК

По химическому строению

1) Алифатические – глицин (Гли), аланин (Ала), валин (Вал), лейцин (Лей), изолейцин (Илей);

2) Оксикислоты – серин (Сер), треанин (Тре);

3) Дикарбоновые – аспарагин (Асп), глутамин (Глу), аспарагиновая кислота (Аск), глутаминовая кислота (Глк);

4) Двуосновные – лизин (Лиз), гистидин (Гис), аргинин (Арг);

5) Ароматические – фениналанин (Фен), тирозин (Тир), триптофан (Три);

6) Серосодержащие – цистеин (Цис), метионин (Мет).

По биохимической роли:

1) глюкогенные – через ряд химических превращений поступают на путь гликолиза (окисления глюкозы) – Гли, Ала, Тре, Вал, Аск, Глк, Арг, Гис, Мет.

2) кетогенные – участвуют в образовании кетоновых тел - Лей, Илей, Тир, Фен.

По заменимости:

1) Незаменимые – не синтезируются в организме – Гис, Иле, Лей, Лиз, Мет, Фен, Тре, Три, Вал, а у молодняка Арг, Гис.

2) Заменимые – остальные.

За счет наличияв молекуле АК одновременно аминной и карбоксильной групп этим соединениям присущи кислотно-основные свойства. В нейтральной среде АК существуют в виде биполярных ионов- цвиттер-ионов т.е.

не NH 2 – R – COOH , аNH 3 + – R - COO –

Образование пептидной связи . Если карбоксильная группа одной АК ацилирует аминогруппу другой АК, от образуется амидная связь, которую называют пептидной. Т. о. пептиды – это соединения, образованные из остатков альфа-АК, соединенных между собой пептидной связью .

Данная связь достаточно стабильна и разрыв ее происходит лишь при участии катализаторов – специфических ферментов. Посредством такой связи АК объединяются в достаточно длинные цепочки, которые носят название полипептидных. Каждая такая цепь содержит на одном конце АК со свободной аминогруппой – это N -концевой остаток, и на другом с карбоксильной группой – С-концевой остаток.

Полипептиды, способные самопроизвольно формировать и удерживать определенную пространственную структуру, которая называется конформацией, относят к белкам. Стабилизация такой структуры возможна лишь при достижении полипептидами определенной длины, поэтому белками обычно считают полипептиды молекулярной массой более 5 000 Да. (1Да равен 1/12 изотопа углерода). Только имея определенное пространственное строение, белок может функционировать.

Функции белков

1) Структурная (пластическая) – белками образованы многие клеточные компоненты, а в комплексе с липидами они входят в состав клеточных мембран.

2) Каталитическая – все биологические катализаторы – ферменты по своей химической природе являются белками.

3) Транспортная – белок гемоглобин транспортирует кислород, ряд других белков образуя комплекс с липидами транспортируют их по крови и лимфе (пример: миоглобин, сывороточный альбумин).

4) Механохимическая – мышечная работа и иные формы движения в организме осуществляются при непосредственном участии сократительных белков с использованием энергии макроэргических связей (пример: актин, миозин).

5) Регуляторная – ряд гормонов и других биологически активных веществ имеют белковую природу (пр.: инсулин, АКТГ).

6) Защитная – антитела (иммуноглобулины) являются белками, кроме тогооснову кожи составляет белок коллаген, а волос – креатин. Кожа и волосы защищают внутреннюю среду организма от внешних воздействий. В состав слизи и синовиальной жидкости входят мукопротеиды.

7) Опорная – сухожилия, поверхности суставов соединения костей образованы в значительной степени белковыми веществами (пр.: коллаген, эластин).

8) Энергетическая – аминокислоты белков могут поступать на путь гликолиза, который обеспечивает клетку энергией.

9) Рецепторная – многие белки участвуют в процессах избирательного узнавания (рецепторы).

Уровни организации белковой молекулы.

В современной литературе принято рассматривать4 уровня организации структуры молекулы белка.

Последовательность аминокислотных остатков, соединенных между собой пептидной связью называют первичным уровнем организации белковой молекулы. Она кодируется структурным геном каждого белка. Связи: пептидная и дисульфидные мостики между относительно близко расположенными остатками цистеинов. Это ковалентные взаимодействия, которые разрушаются только под действием протеолитических ферментов (пепсин, трипсин и т.д.).

Вторичной структурой называют пространственное расположение атомов главной цепи молекулы белка . Существует три типа вторичной структуры: альфа-спираль, бета-складчатость и бета-изгиб. Образуется и удерживается в пространстве за счет образования водородных связей между боковыми группировками АК основной цепи. Водородные связи образуются между электроотрицательными атомами кислорода карбонильных групп и атомами водорода двух аминокислот.

Альфа-спираль – это пептидная цепь штопорообразно закрученная вокруг воображаемого цилиндра. Диаметр такой спирали 0,5 А. В природных белках обнаружена только правая спираль. Некоторые белки (инсулин) имеют две параллельные спирали. Бета-складчатость – полипептидная цепь собрана в равнозначные складки. Бета-изгиб – образуется между тремя аминокислотами за счет водородной связи. Он необходим для изменения пространственного расположения полипептидной цепи при образовании третичной структуры белка.

Третичная структура – это свойственный данному белку способ укладки полипептидой цепи в пространстве . Это основа функциональности белка. Она обеспечивает стабильность обширных участков белка, состоящих из множества аминокислотных остатков и боковых групп. Такие упорядоченные в пространстве участки белка формируют активные центры ферментов или зоны связывания и повреждение третичной структуры приводит к утрате функциональной активности белка.

Стабильность третичной структуры зависит в основном от нековалентных взаимодействий внутри белковой глобулы – преимущественно водородных связей и ван-дер-ваальсовых сил. Но некоторые белки дополнительно стабилизируются за счет таких ковалентных взаимодействий как дисульфидные мостики межу остатками цистеина.

Большинство белковых молекул имеют участки как альфа-спирали так и бета-складчатости. Но чаще по форме третичной структуры разделяют глобулярные белки – построенные преимуществено из альфа-спиралей и имеющеие форму шара или элипса (большинство ферментов). И фибрилярные – состоящие пеимущественно из бета-складчатости и имеющие сплющенную или нитевидную формы (пепсин, белки соединительной такни и хряща).

Размещение в пространстве взаимодействующих между собой субъединиц, образованных отдельными полипептидными цепями, называется четвертичной структурой . Т.е. в формировании четвертичной структуры участвуют не пептидные цепи сами по себе, а глобулы, образованные каждой из этих цепей в отдельности. Четвертичная структура – это высший уровень организации белковой молекулы и он присущ далеко не всем белкам. Связи, формирующие эту структуру нековалентные: водородные, электростатического взаимодействия.

Фундаментальный принцип молекулярной биологии: последовательность аминокислотных остатков полипептидной цепи белка несет в себе всю информацию, которая необходима для формирования определенной пространственной структуры. Т.е. имеющаяся в данном белке аминокислотная последовательность предопределяет образование альфа- или бета-конформации вторичной структуры за счет образования между этими АК водородных или дисульфидных связей и в дальнейшем формирование глобулярной или фибрилярной структуры также за счет нековалентных взаиомдействий между боковыми учатками определенных аминокислот.

Физико-химические свойства

Растворы белка относятся к растворам ВМС и обладают рядом свойств гидрофильных коллоидов: медленной диффузией, высокой вязкостью, опаслеценцией, дают конус Тиндаля.

1) Амфотерность связана с наличием в молекуле белка катионообразующих групп – аминогрупп и анионообразующих – карбоксильных группу. Знак заряда молекулы зависит от количества свободных групп. Если преоблазают карбоксильные группы то заряд молекулы отрицательный (проявляются свойства слабой кислоты), если аминогруппы – то положительный (основные свойства).

Заряд белка также зависит от рН среды. В кислой среде молекула приобретаетположительный заряд, в щелочной – отрицательный.

[ NH 3 + - R – COO - ] 0

pH > 7 [ OH - ]7 >pH [ H + ]

[ NH 2 - R – COO - ] - [ NH 3 + - R – COOH] +

Значение рН при котором число разноименных зарядов в белковой молекуле одинаково, т. е. суммарный заряд равен нулю называется изоэлектрической точкой данного белка. Устойчивость белковой молекулы к воздействию физических и химических факторов в изоэлектрической точке наименьшая.

Большинство природных белков содержат значительное количество дикарбоновых аминокислот и поэтому относятся к кислым белкам. Их изоэлектрическая точка лежит в слабокислой среде.

2) Растворы белков обладают буферными свойствами за счет их амфотерности.

3) Растворимость . Поскольку молекула белка содержит полярные амино – и карбоксильные группы, то в растворе поверхностные остатки АК гидратируются – происходит образование коацервата .

4) Коацервация - слияние водных оболочек нескольких частиц, без объединения самих частиц.

5) Коагуляция – склеивание белковых частиц и выпадение их в осадок. Это происходит при удаленииих гидратной оболочки. Для этого достаточно изменить структуручастицы белка, так, чтобы ее гидрофильные группы, которые связывают воду растворителя, оказались внутри частицы. Реакции осаждения балка в растворе делятся на две группы: обратимые (высаливание) и необратимые (денатурация).

6) Денатурацией называется существенное изменение вторичной и третичной структуры белка, т. е. Нарушение системы нековалентных взаимодействий, не затрагивающее его ковалентной (первичной) структуры. Денатурированный белок лишен всякой биологической активности в клетке и в основном используется как источник аминокислот. Денатурирующими агентами могут быть химические факторы: кислоты, щелочи, легко гидратирующие соли, органические растворители, различные окислители. К физическим факторам могут быть отнесены: действие высокого давления, многократное замораживание и оттаивание, ультразвуковые волны, УФ-лучи, ионизирующая радиация. Но наиболее распространенным физическим фактором денатурации белка является повышение температуры.

В ряде случаев денатурированный белок в клетке может быть подвергнут ренатурации, т. е. свернут обратно в первоначальную пространственную структуру. Этот процесс происходит при участии специфических белков, так называемых белков теплового шока (heat shock proteins или hsp ) молекулярной массой 70 кДа. Данные белки синтезируются в клетках в большом количествепри воздействии на нее (или весь организм) неблагоприятных факторов, в частности повышенной температуры. Присоединяясь к развернутой полипептидной цепи hsp 70 быстро сворачивают ее в правильную первоначальную структуру.

Классификация белков

По растворимости: водорастворимые, солерстворимые, спирторастворимые, нерастворимые и пр.

По конформационной структуре : фибриллярные, глобулярные.

По химическому строению: протеины – состоят только из аминокислот, протеиды – помимо АК имеют в составе небелковую часть (углеводы, липиды, металлы, нуклеиновые кислоты)

Протеины :

1) Альбумины – растворимы в воде, не растворимы в конц. растворах солей. р I = 4.6-4.7. Существуют альбумины молока, яиц, сыворотки крови.

2) Глобулины – не растворимы в воде, растворимы в солевых растворах. Имунноглобулины .

3) Гистоны – растворимы в воде, в слабоконцентрированных кислотах. Обладают выраженными основными свойствами. Это ядерные белки, они связаны с ДНК и РНК.

4) Склеропротеины – белки опорных тканей (хрящей, костей), шерсти, волос. Не растворимы в воде, слабых кислотах и щелочах.

а) коллагены – фибрилярные белки соединительной ткани. При длительном кипячении они растворяются в воде и при застудневании образуется желатин.

б) эластины– белки связок и сухожилий. По свойствам похожи на коллагены, но подвергаются гидролизу под действием ферментов пищеварительного сока;

в) кератин – входит в состав волос, перьев, копыт;

г) фиброин – белок шелка, в совем составе содержит много серина;

д) проламины и глютенины – белки растительного происхождения.

Протеиды

Помимо АК содержат простетическую группу и в зависимости от ее химической природы они классифицируются на:

1) Нуклеопротеиды – простетическая група – нуклеиновые кислоты. Среди многочисленных классов нуклеопротеидов наиболее изученными являются рибосомы, состоящие из нескольких молекул РНК и рибосомных белков, и хроматин – основной нуклеопротеид эукариотических клеток, состоящий из ДНК и структурообразующих белков – гистонов (содержатся в клеточном ядре и митохондриях) (подробнее см. главы "Нуклеиновые кислоты" и "Матричный биосинтез").

2) Гемопротеиды - небелковый компонент этих протеидов – гем, построен из четырех пиррольных колец, с ними связан ион двухвалентного железа (через атомы азота). К таким белка относятся: гемоглобин, миоглобин, цитохромы. Этот класс белков еще называют хромопротеиды, поскольку гем является окрашенным соединением. Гемоглобин – транспорт кислорода. Миоглобин – запасание кислорода в мышцах. Цитохромы (ферменты) – катализ окислительно-восстановаительных реакций и электронный транспорт в дыхательной цепи.

(Подробнее см. приложение 1).

3) Металлопротеиды – в состав простетической группы входят металлы. Хлорофилл – содержит гем, но вместо железа – магний. Цитохром а – содержит медь, сукцинатдегидрогеназа и др. ферменты содержат негеминовое железо (ферродоксин ).

4) Липопротеиды – содержат липиды, входят в состав клеточных мембран

5) Фосфопротеиды – содержат остаток фосфорной кислоты

6) Глюкопротеиды – содержат сахара

ЛИТЕРАТУРА К ГЛАВЕ IV .2.

1. Балезин С. А. Практикум по физической и коллоидной химии // М:. Просвещение, 1972, 278 с.;

2. Бышевский А. Ш., Терсенов О. А. Биохимия для врача // Екатеринбург: Уральский рабочий, 1994, 384 с.;

3. Кнорре Д. Г., Мызина С. Д. Биологическая химия. – М.: Высш. шк. 1998, 479 с.;

4. Молекулярная биология. Структура и функции белков /Под ред. А. С. Спирина // М.: Высш. шк., 1996, 335 с.;

6. Равич – Щербо М. И., Новиков В. В. Физическая и коллоидная химия // М:. Высш. шк., 1975,255 с.;

7. Филиппович Ю. Б., Егорова Т. А., Севастьянова Г. А. Практикум по общей биохимии // М.: Просвящение, 1982, 311с.;

Формирование новых знаний. Лекционный блок.

План изучения темы:

1.Роль белков в организме, природные источники белков.

2.Состав и строение белков.

3.Функции белков.

4.Физические и химические свойства белков.

5.Синтез белков.

6.Превращения белков в организме

Из органических веществ, входящих в живую клетку, важнейшую роль играют белки. На их долю приходится около 50% массы клетки. Благодаря белкам организм приобрел возможность двигаться, размножаться, расти, усваивать пищу, реагировать на внешние воздействия и т. д.

«Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка», – писал Энгельс в своих трудах.

Белки – необходимые компоненты пищевых продуктов, они входят в состав лекарственных препаратов.

Белок – важный компонент пищи человека. Основные источники пищевого белка: мясо, молоко, продукты переработки зерна, хлеб, рыба, овощи. Потребность в белке зависит от возраста, пола, вида деятельности. В организме здорового человека должен быть баланс между количеством поступающих белков и выделяющимися продуктами распада. Для оценки белкового обмена введено понятие белкового баланса. В зрелом возрасте у здорового человека существует азотное равновесие, т.е. количество азота, полученного с белками пищи равно количеству выделяемого азота. В молодом, растущем организме идет накопление белковой массы, поэтому азотный баланс будет положительный, т.е. количество поступающего азота превышает количество выводимого из организма. У людей пожилого возраста, а также при некоторых заболеваниях наблюдается отрицательный азотный баланс. Длительный отрицательный азотный баланс ведет к гибели организма.

Необходимо помнить, что некоторые аминокислоты при тепловой обработке, длительном хранении продуктов могут образовывать неусвояемые организмом соединения, т.е. становиться “недоступными”. Это снижает ценность белка.

Животные и растительные белки усваиваются организмом неодинаково. Если белки молока, молочных продуктов, яиц усваиваются на 96%, мяса и рыбы – на 93–95%, то белки хлеба – на 62–86%, овощей – на 80%, картофеля и некоторых бобовых – на 70%. Однако смесь этих продуктов может быть биологически более полноценной.

На степень усвоения организмом белков оказывает влияние технология получения пищевых продуктов и их кулинарная обработка. При умеренном нагревании пищевых продуктов, особенно растительного происхождения, усвояемость белков несколько возрастает. При интенсивной тепловой обработке усвояемость снижается.


Суточная потребность взрослого человека в белке разного вида 1–1,5 г на 1 кг массы тела, т.е. приблизительно 85–100 г. Доля животных белков должна составлять приблизительно 55% от общего его количества в рационе.

2. Строение белков .

Многие органические соединения, входящие в состав клетки, характеризуются большими размерами молекул. Как называются такие молекулы? (макромолекулы) Они состоят обычно из повторяющихся сходных по строению низкомолекулярных соединений, связанных между собой ковалентными связями. Их строение можно сравнить с бусинками на нити. Как называются эти составные элементы? (Мономеры). Они образуют полимеры. Большинство полимеров построено из одинаковых мономеров. Такие мономеры называются регулярными. Например, если А – мономер, то –А-А-А-…….А- полимер. Полимеры, в которых мономеры различны по строению, называются нерегулярными. Например, -А-В-Р-П-А-……Г-Р-П-А-. Состав определяет их свойства.

Белки – нерегулярные полимеры, мономерами которых являются аминокислоты.

Белки – это сложные высокомолекулярные природные соединения, построенные из -аминокислот. В состав белков входит 20 различных аминокислот, отсюда следует огромное многообразие белков при различных комбинациях аминокислот. Как из 33 букв алфавита мы можем составить бесконечное число слов, так из 20 аминокислот – бесконечное множество белков. В организме человека насчитывается до 100000 белков.

В состав большинства белков входят 300–500 аминокислотных остатков, но есть и более крупные белки, состоящие из 1500 и более аминокислот. Белки различаются и составом аминокислот и числом аминокислотных звеньев, и особенно порядком чередования их в полипептидных цепях. Расчет показывает, что для белка, построенного из 20 различных аминокислот, содержащего в цепи 100 аминокислотных остатков, число возможных вариантов может составить 10130. Многие белки велики и по длине, и по молекулярной массе.

Инсулин –5700

Рибонуклеаза –12700

Альбумин-36000

Гемоглобин-65000

Белки должны быть при такой массе длинными нитями. Но их макромолекулы имеют формулу компактных шаров (глобул) или вытянутых структур (фибрилл).

Белки подразделяют на протеины (простые белки) и протеиды (сложные белки). Число аминокислотных остатков, входящих в молекулы, различно, например: инсулин – 51, миоглобин – 140. Отсюда Mr белка от 10 000 до нескольких миллионов.

Первая гипотеза о строении молекулы белка была предложена в 70-х годах XIX в. Это была уреидная теория строения белка. В 1903 г. Немецкий ученый Э.Г.Фишер предложил пептидную теорию, которая стала ключом к тайне строения белка. Фишер предположил, что белки представляют собой полимеры из остатков аминокислот, соединенных пептидной связью NH–CO. Идея о том, что белки – это полимерные образования, высказывалась еще в 1888 г. Русским ученым А.Я.Данилевским. Эта теория получила подтверждение в последующих работах. Согласно полипептидной теории белки имеют определенную структуру

Многие белки состоят из нескольких полипептидных частиц, которые складываются в единый агрегат. Так, молекула гемоглобина (С738Н1166S2Fe4O208) состоит из четырех субъединиц. Отметим, что Mr белка яйца = 36 000, Mr белка мышц = 1 500 000.

Первичная структура белка – последовательность чередования аминокислотных остатков, осуществляется за счет пептидных (амидных) связей, все связи ковалентные, прочные.

Вторичная структура – форма полипептидной цепи в пространстве. Белковая цепь закручена в спираль, осуществляется за счет множества водородных связей.

Третичная структура – реальная трехмерная конфигурация, которую принимает в пространстве закрученная спираль Третичная структура – клубок из полипептидной спирали. (Демонстрация клубка из эластичного шнура).

Представить конфигурацию легко, труднее понять, какие силы ее поддерживают. (Водородные связи, дисульфидные мостики –S-S-, сложноэфирная связь между радикалами. Полярные группы COOH и OH взаимодействуют с водой, а неполярные радикалы отталкивают ее, они направлены внутрь глобул. Радикалы взаимодействуют между собой благодаря силам Ван-дер-Ваальса.) (за счет гидрофобных связей), у некоторых белков – S–S-связи (бисульфидные мостики), сложноэфирные мостики..

Четвертичная структура – соединенные друг с другом макромолекулы белков образуют комплекс. Четвертичная структура – структура из нескольких полипептидных цепей

© nvuti-info.ru, 2024
Новости бизнеса, дизайна, красоты, строительства, финансов