Системи раціональних рівнянь математики. Відеоурок «Раціональні рівняння Раціональні рівняння та системи раціональних рівнянь

22.12.2023

Дотримання Вашої конфіденційності є важливим для нас. З цієї причини ми розробили Політику конфіденційності, яка описує, як ми використовуємо та зберігаємо Вашу інформацію. Будь ласка, ознайомтесь з нашими правилами дотримання конфіденційності та повідомте нам, якщо у вас виникнуть будь-які питання.

Збір та використання персональної інформації

Під персональної інформацією розуміються дані, які можна використовувати для ідентифікації певного особи чи зв'язку з ним.

Від вас може бути запитане надання вашої персональної інформації у будь-який момент, коли ви зв'язуєтесь з нами.

Нижче наведено приклади типів персональної інформації, яку ми можемо збирати, і як ми можемо використовувати таку інформацію.

Яку персональну інформацію ми збираємо:

  • Коли ви залишаєте заявку на сайті, ми можемо збирати різну інформацію, включаючи ваше ім'я, номер телефону, електронну адресу і т.д.

Як ми використовуємо вашу персональну інформацію:

  • Персональна інформація, що збирається нами, дозволяє нам зв'язуватися з вами і повідомляти про унікальні пропозиції, акції та інші заходи та найближчі події.
  • Час від часу ми можемо використовувати вашу персональну інформацію для надсилання важливих повідомлень та повідомлень.
  • Ми також можемо використовувати персональну інформацію для внутрішніх цілей, таких як проведення аудиту, аналізу даних та різних досліджень з метою покращення послуг, що надаються нами, та надання Вам рекомендацій щодо наших послуг.
  • Якщо ви берете участь у розіграші призів, конкурсі або подібному стимулювальному заході, ми можемо використовувати інформацію, що надається, для управління такими програмами.

Розкриття інформації третім особам

Ми не розкриваємо отриману від Вас інформацію третім особам.

Винятки:

  • Якщо необхідно - відповідно до закону, судовим порядком, у судовому розгляді, та/або на підставі публічних запитів або запитів від державних органів на території РФ - розкрити вашу персональну інформацію. Ми також можемо розкривати інформацію про вас, якщо ми визначимо, що таке розкриття необхідно або доречно з метою безпеки, підтримання правопорядку або інших суспільно важливих випадків.
  • У разі реорганізації, злиття або продажу ми можемо передати персональну інформацію, що збирається нами, відповідній третій особі – правонаступнику.

Захист персональної інформації

Ми вживаємо запобіжних заходів - включаючи адміністративні, технічні та фізичні - для захисту вашої персональної інформації від втрати, крадіжки та недобросовісного використання, а також від несанкціонованого доступу, розкриття, зміни та знищення.

Дотримання вашої конфіденційності на рівні компанії

Для того, щоб переконатися, що ваша персональна інформація знаходиться в безпеці, ми доводимо норми дотримання конфіденційності та безпеки до наших співробітників і суворо стежимо за дотриманням заходів дотримання конфіденційності.

Лінійне рівняння – рівняння виду a x = b , де x — змінна, a та b деякі числа, причому a ≠ 0 .

Приклади:

  1. 3 x = 2
  1. 2 7 x = − 5

Лінійними рівняннями називають як рівняння виду a x = b , а й будь-які рівняння, які з допомогою перетворень і спрощень зводяться до цього виду.

Як же розв'язувати рівняння, які наведені до виду a x = b? Достатньо поділити ліву та праву частину рівняння на величину a . В результаті отримаємо відповідь: x = b a.

Як розпізнати, чи є довільне рівняння лінійним чи ні? Треба звернути увагу на змінну, яка є у ньому. Якщо старший ступінь, в якому стоїть змінна, дорівнює одиниці, то таке лінійне рівняння.

Для того, щоб розв'язати лінійне рівняння , необхідно розкрити дужки (якщо вони є), перенести «ікси» в ліву частину, числа – у праву, навести подібні доданки. Вийде рівняння виду a x = b. Розв'язання даного рівняння: x = b a.

Приклади:

  1. 2 x + 1 = 2 (x − 3) + 8

Це лінійне рівняння, оскільки змінна стоїть у першому ступені.

Спробуємо перетворити його на вигляд a x = b:

Для початку розкриємо дужки:

2 x + 1 = 4 x − 6 + 8

У ліву частину переносяться всі доданки з x , у праву – числа:

2 x − 4 x = 2 − 1

Тепер поділимо ліву та праву частину на число (-2) :

− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

Відповідь: x = − 0,5

  1. x 2 − 1 = 0

Це рівняння перестав бути лінійним, оскільки старша ступінь, у якій стоїть змінна x дорівнює двом.

  1. x (x + 3) − 8 = x − 1

Це рівняння виглядає лінійним на перший погляд, але після розкриття дужок старший ступінь дорівнюватиме двом:

x 2 + 3 x − 8 = x − 1

Це рівняння не є лінійним.

Особливі випадки(У 4 завданні ОДЕ вони не зустрічалися, але знати їх корисно)

Приклади:

  1. 2 x − 4 = 2 (x − 2)

2 x − 4 = 2 x − 4

2 x − 2 x = − 4 + 4

І як тут шукати x , якщо його немає? Після виконання перетворень ми здобули правильну рівність (тотожність), яка не залежить від значення змінної x . Яке значення x ми не підставляли б у вихідне рівняння, в результаті завжди виходить вірна рівність (тотожність). Значить, x може бути будь-яким числом.

Відповідь: x ∈ (− ∞ ;   + ∞)

  1. 2 x − 4 = 2 (x − 8)

Це лінійне рівняння. Розкриємо дужки, перенесемо ікси вліво, числа вправо:

2 x − 4 = 2 x − 16

2 x − 2 x = − 16 + 4

В результаті перетворень x скоротився, але в результаті вийшла неправильна рівність, оскільки. Яке значення x ми не підставляли б у вихідне рівняння, в результаті завжди буде неправильна рівність. І це означає, що немає таких значень x , у яких рівність ставало б правильним.


Продовжуємо розмову про вирішення рівнянь. У цій статті ми докладно зупинимося на раціональних рівнянняхта принципи розв'язання раціональних рівнянь з однією змінною. Спочатку розберемося, рівняння якого виду називаються раціональними, дамо визначення цілих раціональних та дробових раціональних рівнянь, наведемо приклади. Далі отримаємо алгоритми розв'язання раціональних рівнянь, і, звичайно ж, розглянемо рішення характерних прикладів з усіма необхідними поясненнями.

Навігація на сторінці.

Відштовхуючись від озвучених визначень, наведемо кілька прикладів раціональних рівнянь. Наприклад, x = 1, 2 · x-12 · x 2 · y · z 3 = 0, - це все раціональні рівняння.

З наведених прикладів видно, що раціональні рівняння, як, втім, і рівняння інших видів, можуть бути як з однією змінною, так і з двома, трьома і т.д. змінними. У наступних пунктах ми говоритимемо про вирішення раціональних рівнянь із однією змінною. Розв'язання рівнянь із двома зміннимита їх великою кількістю заслуговують на окрему увагу.

Крім поділу раціональних рівнянь за кількістю невідомих змінних, їх поділяють на цілі та дробові. Дамо відповідні визначення.

Визначення.

Раціональне рівняння називають цілим, якщо і ліва, і права його частини є цілими раціональними виразами.

Визначення.

Якщо хоча б одна з частин раціонального рівняння є дрібним виразом, то таке рівняння називається дробово раціональним(або дрібним раціональним).

Зрозуміло, що цілі рівняння не містять поділу на змінну, а дробові раціональні рівняння обов'язково містять поділ на змінну (або змінну в знаменнику). Так 3 x 2 = 0 і (x+y)·(3·x 2 −1)+x=−y+0,5– це цілі раціональні рівняння, обидві частини є цілими висловлюваннями. А і x: (5 · x 3 + y 2) = 3: (x-1): 5 - приклади дробових раціональних рівнянь.

Завершуючи цей пункт, звернемо увагу, що відомі до цього моменту лінійні рівняння і квадратні рівняння є цілими раціональними рівняннями.

Вирішення цілих рівнянь

Одним із основних підходів до вирішення цілих рівнянь є їх зведення до рівносильних алгебраїчним рівнянням. Це можна зробити завжди, виконавши наступні рівносильні перетворення рівняння:

  • спочатку вираз із правої частини вихідного цілого рівняння переносять у ліву частину з протилежним знаком, щоб отримати нуль у правій частині;
  • після цього в лівій частині рівняння утворилося стандартного виду.

В результаті виходить алгебраїчне рівняння, яке рівносильне вихідному цілому рівнянню. Так, у найпростіших випадках розв'язання цілих рівнянь зводяться до розв'язання лінійних чи квадратних рівнянь, а загальному випадку – до розв'язання рівня алгебри ступеня n . Для наочності розберемо рішення прикладу.

приклад.

Знайдіть коріння цілого рівняння 3·(x+1)·(x−3)=x·(2·x−1)−3.

Рішення.

Зведемо розв'язання цього цілого рівняння до рішення рівносильного йому рівняння алгебри. Для цього, по-перше, перенесемо вираз із правої частини до лівої, в результаті приходимо до рівняння 3·(x+1)·(x−3)−x·(2·x−1)+3=0. І, по-друге, перетворимо вираз, що утворився в лівій частині, в багаточлен стандартного вигляду, виконавши необхідні: 3·(x+1)·(x−3)−x·(2·x−1)+3= (3·x+3)·(x−3)−2·x 2 +x+3= 3·x 2 −9·x+3·x−9−2·x 2 +x+3=x 2 −5·x−6. Таким чином, розв'язок вихідного цілого рівняння зводиться до розв'язання квадратного рівняння x 2 −5·x−6=0 .

Обчислюємо його дискримінант D=(−5) 2 −4·1·(−6)=25+24=49, він позитивний, отже, рівняння має два дійсні корені, які знаходимо за формулою коренів квадратного рівняння :

Для повної впевненості виконаємо перевірку знайденого коріння рівняння. Спочатку перевіряємо корінь 6 , підставляємо його замість змінної x вихідне ціле рівняння: 3·(6+1)·(6−3)=6·(2·6−1)−3, Що те саме, 63 = 63 . Ця вірна числова рівність, отже, x=6 справді є коренем рівняння. Тепер перевіряємо корінь −1, маємо 3·(−1+1)·(−1−3)=(−1)·(2·(−1)−1)−3, Звідки, 0 = 0 . При x=−1 вихідне рівняння також звернулося до правильної числову рівність, отже, x=−1 теж є коренем рівняння.

Відповідь:

6 , −1 .

Тут ще слід зауважити, що з уявленням цілого рівняння у вигляді рівняння алгебри пов'язаний термін «ступінь цілого рівняння». Дамо відповідне визначення:

Визначення.

ступенем цілого рівнянняназивають ступінь рівносильного йому рівняння алгебри.

Згідно з цим визначенням, ціле рівняння з попереднього прикладу має другий ступінь.

На цьому можна було б закінчити з вирішенням цілих раціональних рівнянь, якби жодне але…. Як відомо, рішення рівнянь алгебри вище другої пов'язане зі значними складнощами, а для рівнянь ступеня вище четвертої взагалі не існує загальних формул коренів. Тому для вирішення цілих рівнянь третього, четвертого і вищих ступенів часто доводиться вдаватися до інших методів розв'язання.

У таких випадках іноді рятує підхід до вирішення цілих раціональних рівнянь, заснований на методі розкладання на множники. При цьому дотримуються наступного алгоритму:

  • спочатку домагаються, щоб у правій частині рівняння був нуль, для цього переносять вираз із правої частини цілого рівняння до лівої;
  • потім, отриманий вираз у лівій частині представляють у вигляді добутку кількох множників, що дозволяє перейти до сукупності кількох простіших рівнянь.

Наведений алгоритм розв'язання цілого рівняння через розкладання на множники потребує детального роз'яснення з прикладу.

приклад.

Розв'яжіть ціле рівняння (x 2 −1)·(x 2 −10·x+13)= 2·x·(x 2 −10·x+13) .

Рішення.

Спочатку як зазвичай переносимо вираз із правої частини до лівої частини рівняння, не забувши змінити знак, отримуємо (x 2 −1)·(x 2 −10·x+13)− 2·x·(x 2 −10·x+13)=0 . Тут досить очевидно, що не доцільно перетворювати ліву частину отриманого рівняння в багаточлен стандартного виду, так як це дасть рівняння алгебри четвертого ступеня виду x 4 −12·x 3 +32·x 2 −16·x−13=0, Рішення якого складно.

З іншого боку, очевидно, що в лівій частині отриманого рівняння можна x 2 -10 x 13, тим самим представивши її у вигляді твору. Маємо (x 2 −10·x+13)·(x 2 −2·x−1)=0. Отримане рівняння рівносильне вихідному цілому рівнянню, та її, своєю чергою, можна замінити сукупністю двох квадратних рівнянь x 2 −10·x+13=0 і x 2 −2·x−1=0 . Знаходження їх коренів за відомими формулами коренів через дискримінант не складно, коріння рівні . Вони є шуканим корінням вихідного рівняння.

Відповідь:

Для вирішення цілих раціональних рівнянь також буває корисним метод введення нової змінної. У деяких випадках він дозволяє переходити до рівнянь, ступінь яких нижчий, ніж рівень вихідного цілого рівняння.

приклад.

Знайдіть дійсне коріння раціонального рівняння (x 2 +3 · x +1) 2 +10 = -2 · (x 2 +3 · x-4).

Рішення.

Зведення даного цілого раціонального рівняння до рівня алгебри є, м'яко кажучи, не дуже гарною ідеєю, тому що в цьому випадку ми прийдемо до необхідності вирішення рівняння четвертого ступеня, що не має раціонального коріння. Тому доведеться пошукати інший спосіб рішення.

Тут нескладно помітити, що можна ввести нову змінну y, і замінити нею вираз x 2 +3 x. Така заміна призводить нас до цілого рівняння (y+1) 2 +10=−2·(y−4) , яке після перенесення виразу −2·(y−4) у ліву частину і подальшого перетворення виразу, що утворився там, зводиться до квадратного рівняння y 2 +4 · y +3 = 0 . Коріння цього рівняння y=−1 та y=−3 легко знаходяться, наприклад, їх можна підібрати, ґрунтуючись на теоремі, зворотній теоремі Вієта.

Тепер переходимо до другої частини методу введення нової змінної, тобто проведення зворотної заміни. Виконавши зворотну заміну, отримуємо два рівняння x 2 +3 x = -1 і x 2 +3 x = -3 , які можна переписати як x 2 +3 x +1 = 0 і x 2 +3 x +3 =0. За формулою коренів квадратного рівняння знаходимо коріння першого рівняння. А друге квадратне рівняння немає дійсних коренів, оскільки його дискримінант негативний (D=3 2 −4·3=9−12=−3 ).

Відповідь:

Взагалі, коли ми маємо справу з цілими рівняннями високих ступенів, завжди треба бути готовим до пошуку нестандартного методу чи штучного прийому для їх вирішення.

Розв'язання дробово раціональних рівнянь

Спочатку корисно розібратися, як розв'язувати дробово раціональні рівняння виду , де p(x) і q(x) – цілі раціональні висловлювання. А далі ми покажемо, як звести рішення решти дробово раціональних рівнянь до розв'язання рівнянь зазначеного виду.

В основі одного з підходів до вирішення рівняння лежить наступне твердження: числовий дріб u/v , де v - відмінне від нуля число (інакше ми зіткнемося з , яке не визначено), дорівнює нулю тоді і тільки тоді, коли її чисельник дорівнює нулю, то є, і тоді, коли u=0 . В силу цього твердження рішення рівняння зводиться до виконання двох умов p(x)=0 і q(x)≠0 .

Цьому висновку відповідає наступний алгоритм розв'язання дробово раціонального рівняння. Щоб вирішити дробове раціональне рівняння виду, треба

  • вирішити ціле раціональне рівняння p (x) = 0;
  • та перевірити, чи виконується для кожного знайденого кореня умова q(x)≠0 , при цьому
    • якщо виконується, цей корінь є коренем вихідного рівняння;
    • якщо не виконується, цей корінь – сторонній, тобто, не є коренем вихідного рівняння.

Розберемо приклад застосування озвученого алгоритму під час вирішення дробового раціонального рівняння.

приклад.

Знайдіть коріння рівняння.

Рішення.

Це дробово раціональне рівняння, причому виду , де p (x) = 3 · x-2, q (x) = 5 · x 2 -2 = 0 .

Відповідно до алгоритму розв'язання дробово раціональних рівнянь цього виду, нам спочатку треба розв'язати рівняння 3·x−2=0 . Це лінійне рівняння, коренем якого є x = 2/3.

Залишилося виконати перевірку для цього кореня, тобто перевірити, чи він задовольняє умові 5·x 2 −2≠0 . Підставляємо у вираз 5 x 2 −2 замість x число 2/3, отримуємо. Умова виконана, тому x=2/3 є коренем вихідного рівняння.

Відповідь:

2/3 .

До розв'язання дробового раціонального рівняння можна підходити з трохи іншої позиції. Це рівняння рівносильне цілому рівнянню p(x)=0 на змінній x вихідного рівняння. Тобто, можна дотримуватись такого алгоритму розв'язання дробово-раціонального рівняння :

  • розв'язати рівняння p(x)=0;
  • знайти ОДЗ змінної x;
  • взяти коріння, що належать області допустимих значень, - вони є шуканим корінням вихідного дробового раціонального рівняння.

Наприклад вирішимо дробове раціональне рівняння з цього алгоритму.

приклад.

Розв'яжіть рівняння.

Рішення.

По-перше, розв'язуємо квадратне рівняння x 2 −2·x−11=0 . Його коріння можна обчислити, використовуючи формулу коренів для парного другого коефіцієнта. D 1 =(−1) 2 −1·(−11)=12, та .

По-друге, знаходимо ОДЗ змінної x для вихідного рівняння. Її становлять усі числа, для яких x 2 +3·x≠0 , що те саме x·(x+3)≠0 , звідки x≠0 , x≠−3 .

Залишається перевірити, чи входять знайдене на першому кроці коріння в ОДЗ. Очевидно, що так. Отже, вихідне дробово раціональне рівняння має два корені.

Відповідь:

Зазначимо, що такий підхід вигідніший за перший, якщо легко знаходиться ОДЗ, і особливо вигідний, якщо ще при цьому коріння рівняння p(x)=0 ірраціональне, наприклад, або раціональне, але з досить великим чисельником і/або знаменником, наприклад, 127/1101 та −31/59 . Це з тим, що у разі перевірка умови q(x)≠0 вимагатиме значних обчислювальних зусиль, і простіше виключити сторонні коріння по ОДЗ.

В інших випадках при вирішенні рівняння , особливо коли коріння рівняння p (x) = 0 цілі, вигідніше використовувати перший з наведених алгоритмів. Тобто, доцільно відразу знаходити коріння цілого рівняння p(x)=0, після чого перевіряти, чи виконується для них умова q(x)≠0, а не знаходити ОДЗ, після чого вирішувати рівняння p(x)=0 на цій ОДЗ . Це з тим, що у разі зробити перевірку зазвичай простіше, ніж знайти ОДЗ.

Розглянемо рішення двох прикладів для ілюстрації обумовлених нюансів.

приклад.

Знайдіть коріння рівняння.

Рішення.

Спочатку знайдемо коріння цілого рівняння (2·x−1)·(x−6)·(x 2 −5·x+14)·(x+1)=0, складеного з використанням чисельника дробу Ліва частина цього рівняння – твір, а права – нуль, тому, згідно з методом розв'язання рівнянь через розкладання на множники, це рівняння рівносильне сукупності чотирьох рівнянь 2·x−1=0 , x−6=0 , x 2 −5·x+ 14=0, x+1=0. Три з цих рівнянь лінійні і одне квадратне, їх ми вміємо вирішувати. З першого рівняння знаходимо x = 1/2, з другого - x = 6, з третього - x = 7, x = -2, з четвертого - x = -1.

Знайденим корінням досить легко виконати їх перевірку на предмет того, чи не звертається при них в нуль знаменник дробу, що знаходиться в лівій частині вихідного рівняння, а визначити ОДЗ, навпаки, не так просто, так як для цього доведеться вирішувати рівняння алгебри п'ятого ступеня. Тому відмовимося від знаходження ОДЗ на користь перевірки коренів. Для цього по черзі підставляємо їх замість змінної x у вираз x 5 −15·x 4 +57·x 3 −13·x 2 +26·x+112, що виходять після підстановки, і порівнюємо їх з нулем: (1/2) 5 −15·(1/2) 4 + 57·(1/2) 3 −13·(1/2) 2 +26·(1/2)+112= 1/32−15/16+57/8−13/4+13+112= 122+1/32≠0 ;
6 5 −15·6 4 +57·6 3 −13·6 2 +26·6+112= 448≠0 ;
7 5 −15·7 4 +57·7 3 −13·7 2 +26·7+112=0;
(−2) 5 −15·(−2) 4 +57·(−2) 3 −13·(−2) 2 + 26·(−2)+112=−720≠0 ;
(−1) 5 −15·(−1) 4 +57·(−1) 3 −13·(−1) 2 + 26·(−1)+112=0 .

Таким чином, 1/2 , 6 і −2 є корінням вихідного дробового раціонального рівняння, а 7 і −1 – сторонні корені.

Відповідь:

1/2 , 6 , −2 .

приклад.

Знайдіть коріння дробового раціонального рівняння.

Рішення.

Спочатку знайдемо коріння рівняння (5·x 2 −7·x−1)·(x−2)=0. Це рівняння рівносильне сукупності двох рівнянь: квадратного 5 x 2 −7 x 1 = 0 і лінійного x 2 = 0 . За формулою коренів квадратного рівняння знаходимо два корені, та якщо з другого рівняння маємо x=2 .

Перевіряти, чи не звертається в нуль знаменник при знайдених значеннях x досить неприємно. А визначити область допустимих значень змінної x у вихідному рівнянні досить легко. Тому діятимемо через ОДЗ.

У нашому випадку ОДЗ змінної x вихідного дробово раціонального рівняння становлять усі числа, крім тих, для яких виконується умова x 2 +5 x-14 = 0 . Корінням цього квадратного рівняння є x=−7 і x=2 , звідки робимо висновок про ОДЗ: її становлять такі x , що .

Залишається перевірити, чи належать знайдене коріння і x=2 області допустимих значень. Коріння - належать, тому, є корінням вихідного рівняння, а x=2 – не належить, тому, це сторонній корінь.

Відповідь:

Ще корисним буде окремо зупинитися у випадках, як у дробовому раціональному рівнянні виду в чисельнику перебуває число, тобто, коли p(x) представлено якимось числом. При цьому

  • якщо це число відмінно від нуля, то рівняння не має коріння, тому що дріб дорівнює нулю тоді і тільки тоді, коли її чисельник дорівнює нулю;
  • якщо це число нуль, корінням рівняння є будь-яке число з ОДЗ.

приклад.

Рішення.

Так як в чисельнику дробу, що знаходиться в лівій частині рівняння, відмінне від нуля число, то при яких x значення цього дробу не може дорівнювати нулю. Отже, це рівняння не має коріння.

Відповідь:

немає коріння.

приклад.

Розв'яжіть рівняння.

Рішення.

У чисельнику дробу, що знаходиться в лівій частині даного дробового раціонального рівняння, знаходиться нуль, тому значення цього дробу дорівнює нулю для будь-якого x, при якому вона має сенс. Іншими словами, рішенням цього рівняння є будь-яке значення x з ОДЗ цієї змінної.

Залишилося визначити цю область припустимих значень. Вона включає всі такі значення x , при яких x 4 +5 x 3 ≠0 . Розв'язаннями рівняння x 4 +5·x 3 =0 є 0 і −5 , оскільки це рівняння рівносильне рівнянню x 3 ·(x+5)=0 , а воно у свою чергу рівносильне сукупності двох рівнянь x 3 =0 і x +5=0 , звідки і видно це коріння. Отже, областю допустимих значень є будь-які x , крім x=0 і x=−5 .

Таким чином, дробово раціональне рівняння має безліч рішень, якими є будь-які числа, крім нуля і мінус п'яти.

Відповідь:

Зрештою, настав час поговорити про розв'язання дробових раціональних рівнянь довільного вигляду. Їх можна записати як r(x)=s(x) , де r(x) і s(x) – раціональні вирази, причому хоча б один із них дробовий. Забігаючи наперед, скажемо, що їх рішення зводиться до розв'язання рівнянь вже знайомого нам виду.

Відомо, що перенесення доданку з однієї частини рівняння до іншої з протилежним знаком призводить до рівносильного рівняння, тому рівняння r(x)=s(x) рівносильне рівняння r(x)−s(x)=0 .

Також ми знаємо, що можна будь-яку, тотожно рівну цьому виразу. Таким чином, раціональний вираз у лівій частині рівняння r(x)−s(x)=0 ми завжди можемо перетворити на тотожно рівний раціональний дріб виду .

Так ми від вихідного дробового раціонального рівняння r(x)=s(x) переходимо до рівняння , яке рішення, як з'ясували вище, зводиться до розв'язання рівняння p(x)=0 .

Але тут обов'язково треба враховувати той факт, що при заміні r(x)−s(x)=0 на , і далі на p(x)=0 може відбутися розширення області допустимих значень змінної x .

Отже, вихідне рівняння r(x)=s(x) і рівняння p(x)=0 , до якого ми прийшли, можуть виявитися нерівносильними, і, вирішивши рівняння p(x)=0 ми можемо отримати коріння, яке буде стороннім корінням вихідного рівняння r(x)=s(x) . Виявити і не включати у відповідь сторонні корені можна, або виконавши перевірку, або перевіривши їх належність ОДЗ вихідного рівняння.

Узагальним цю інформацію в алгоритм розв'язання дробового раціонального рівняння r(x)=s(x). Щоб розв'язати дробове раціональне рівняння r(x)=s(x) треба

  • Отримати праворуч нуль за допомогою перенесення виразу з правої частини з протилежним знаком.
  • Виконати дії з дробами та багаточленами в лівій частині рівняння, тим самим перетворивши її на раціональний дріб виду .
  • Розв'язати рівняння p(x)=0.
  • Виявити та виключити сторонні корені, що робиться за допомогою їх підстановки у вихідне рівняння або за допомогою перевірки їх належності ОДЗ вихідного рівняння.

Для більшої наочності покажемо весь ланцюжок розв'язання дробових раціональних рівнянь:
.

Давайте розглянемо рішення кількох прикладів із докладним поясненням ходу рішення, щоб прояснити наведений блок інформації.

приклад.

Розв'яжіть дробове раціональне рівняння.

Рішення.

Діятимемо відповідно до щойно отриманого алгоритму рішення. І спочатку перенесемо доданки з правої частини рівняння до лівої, в результаті переходимо до рівняння .

На другому кроці нам потрібно перетворити дробовий раціональний вираз у лівій частині отриманого рівняння до виду дробу. І тому виконуємо приведення раціональних дробів до спільного знаменника і спрощуємо отримане выражение: . Так ми приходимо до рівняння.

На наступному етапі потрібно вирішити рівняння −2·x−1=0 . Знаходимо x=−1/2.

Залишається перевірити, чи не є знайдене число −1/2 стороннім коренем вихідного рівняння. Для цього можна зробити перевірку або знайти ОДЗ змінною вихідного рівняння x. Продемонструємо обидва підходи.

Почнемо із перевірки. Підставляємо вихідне рівняння замість змінної x число −1/2 , отримуємо , що те саме, −1=−1 . Підстановка дає правильну числову рівність, тому x=−1/2 є коренем вихідного рівняння.

Тепер покажемо, як останній пункт алгоритму виконується через ОДЗ. Областю допустимих значень вихідного рівняння є безліч всіх чисел, крім −1 та 0 (при x=−1 та x=0 перетворюються на нуль знаменники дробів). Знайдений на попередньому кроці корінь x=−1/2 належить ОДЗ, отже, x=−1/2 є коренем вихідного рівняння.

Відповідь:

−1/2 .

Розглянемо ще приклад.

приклад.

Знайдіть коріння рівняння.

Рішення.

Нам потрібно розв'язати дрібно раціональне рівняння, пройдемо всі кроки алгоритму.

По-перше, переносимо доданок з правої частини в ліву, отримуємо .

По-друге, перетворимо вираз, що утворився в лівій частині: . В результаті приходимо до рівняння x = 0.

Його корінь очевидний – це нуль.

На четвертому етапі залишається з'ясувати, чи не є знайдений корінь стороннім для початкового раціонального рівняння. При його підстановці у вихідне рівняння виходить вираз. Вочевидь, воно немає сенсу, оскільки містить розподіл на нуль. Звідки укладаємо, що 0 є стороннім коренем. Отже, вихідне рівняння немає коріння.

7, що призводить до рівняння. Звідси можна зробити висновок, що вираз у знаменнику лівої частини повинен бути рівний з правої частини, тобто, . Тепер віднімаємо з обох частин трійки: . За аналогією, звідки, і далі.

Перевірка показує, що обидва знайдені корені є корінням вихідного дробового раціонального рівняння.

Відповідь:

Список літератури.

  • Алгебра:навч. для 8 кл. загальноосвіт. установ/[Ю. Н. Макарічев, Н. Г. Міндюк, К. І. Нешков, С. Б. Суворова]; за ред. С. А. Теляковського. - 16-те вид. – М.: Просвітництво, 2008. – 271 с. : іл. - ISBN 978-5-09-019243-9.
  • Мордковіч А. Г.Алгебра. 8 клас. У 2 ч. ч. 1. Підручник для учнів загальноосвітніх установ / А. Г. Мордкович. - 11-те вид., стер. – К.: Мнемозіна, 2009. – 215 с.: іл. ISBN 978-5-346-01155-2.
  • Алгебра: 9 клас: навч. для загальноосвіт. установ/[Ю. Н. Макарічев, Н. Г. Міндюк, К. І. Нешков, С. Б. Суворова]; за ред. С. А. Теляковського. - 16-те вид. – М.: Просвітництво, 2009. – 271 с. : іл. - ISBN 978-5-09-021134-5.

Ви вже зустрічалися в курсі алгебри 7-го класу, але це були лише системи спеціального виду – системи двох лінійних рівнянь із двома змінними. У 8-му класі ви навчилися вирішувати раціональні рівняння з однією змінною, отже, можна подумати і про вирішення систем раціональних рівнянь з двома змінними, тим більше, що такі системи досить часто являють собою математичні моделі ситуацій, що вивчаються. Про одну з таких моделей ви дізналися вже з підручника «Алгебра-8». Наведений нижче приклад запозичений із зазначеного підручника.

Насправді зручніше ширше тлумачення терміна «раціональне рівняння із двома змінними»: це рівняння виду - раціональні висловлювання із двома змінними х і у.
Приклади раціональних рівнянь із двома змінними:


Звичайно, можна розглядати раціональні рівняння і з іншими змінними, не обов'язково з х ну, наприклад, а3 - bx = = 3аb - раціональне рівняння з двома змінними а, b. Але за традицією в алгебрі воліють як змінні використовувати літери х, у.

Визначення 2.

Рішенням рівняння р (х, у) = 0 називають будь-яку пару чисел (х; у), яка задовольняє цього рівняння, тобто. звертає рівність зі змінними р (х, у) = 0 у правильну числову рівність.

Наприклад:

1) (3; 7) - рішення рівняння х 2 + у 2 = 58. Справді, З 2 + 7 2 = 58 - правильна числова рівність.
2) - рішення рівняння х 2 + у 2 - 58. Справді, - правильна числова рівність (22 + 36 = 58).

3) (0; 5) - розв'язання рівняння 2ху + х 3 = 0. Справді, 2 0 5 + 0 + О 2 = 0 - правильна числова рівність.
4) (1; 2) не є рішенням рівняння 2ху + х 3 = 0. Справді, 2 1 2 + 3 = 0 - неправильна рівність (виходить 5 = ​​0).

Для рівнянь із двома змінними, як й у рівнянь із однією змінною, можна запровадити поняття рівносильності рівнянь.

Визначення 3.

Два рівняння р(х, у) = 0 і д(х, у) = 0 називають рівносильними, якщо вони мають однакові рішення (зокрема якщо обидва рівняння не мають рішень).

Зазвичай під час вирішення рівняння намагаються замінити це рівняння простішим, але рівносильним йому. Таку заміну називають рівносильним перетворенням рівняння. Два основні рівносильні перетворення вказані нижче:

1) Перенесення членів рівняння з однієї частини рівняння до іншої з протилежними знаками.
Наприклад, заміна рівняння 2х + bу = 7х - 8у рівнянням 2х - 7х - -8у - bу є рівносильне перетворення рівняння.
2) Множення або розподіл обох частин рівняння на те саме відмінне від нуля число або вираз.
Наприклад, заміна рівняння 0,5л:2 - 0,3ху = 2у рівнянням 5л:2 - 3ху = 20у (обидві частини рівняння помножили почленно на 10) є рівносильне перетворення рівняння.

Нерівносильними перетвореннями рівняння, як і у разі рівнянь з однією змінною, є:

1) Звільнення від знаменників, які містять змінні.
2) Зведення обох частин рівняння квадрат.

Якщо в процесі розв'язування рівняння застосовувалося одне із зазначених нерівносильних перетворень, то всі знайдені рішення треба перевірити підстановкою у вихідне рівняння, оскільки серед них можуть виявитися сторонні рішення.

Іноді вдається перейти до геометричної (графічної) моделі рівняння із двома змінними, тобто. побудувати графік рівняння. Ви, напевно, пам'ятаєте, що графіком лінійного рівняння з двома змінними ах + bу + с = 0 (а, Ь, с – числа, коефіцієнти, де хоча б одне з чисел а, Ь відмінно від нуля) є пряма лінія – геометрична модель лінійного рівняння. Спробуємо знайти відповідні графічні моделі ще для деяких раціональних рівнянь із двома змінними х та у.

приклад 2.Побудувати графік рівняння у - 2х2 = 0.

Рішення.Перетворимо рівняння до виду у = 2х2. Графіком функції у - 2х2 є парабола, вона вважається графіком рівняння у - 2х2 = 0 (рис. 33).

приклад 3.Побудувати графік рівняння ху = 2.
Рішення.Перетворюємо рівняння до виду Графіком функції – є гіпербола, вона вважається графіком рівняння ху = 2 (рис. 34).


Таким чином, якщо рівняння р(х, у) = Про вдається перетворити на вигляд у = f(x), то графік функції у - f(х) вважається одночасно і графіком рівняння р(х, у) - 0.

приклад 4.Побудувати графік рівняння х 2 + у 2 = 16.

Рішення.

Скористаємося теоремою з курсу геометрії: графіком рівняння х 2 + у 2 = г 2 , де r-позитивне число є коло з центром на початку координат і радіусом r. Отже, графіком рівняння х 2 + у 2 = 16 є коло із центром на початку координат та радіусом 4 (рис. 35).

Згадана вище теорема є окремим випадком наступної теореми, яка, сподіваємося, також відома вам з курсу геометрії.


Приклад 5.Побудувати графік рівняння:

а) (х - I) 2 + (у - 2) 2 = 9; б)х 2 + у 2 + 4х = 0.

Рішення:

а) Перепишемо рівняння у вигляді (x – I) 2 + (у – 2) 2 = З2. Графіком цього рівняння, за теоремою, є коло з центром у точці (1; 2) та радіусом 3 (рис. 37).

б) Перепишемо рівняння як (х 2 + 4х + 4) + у 2 = 4, тобто. (х + 2) 2 + у 2 = 4 і далі (х - (-2)) 2 + (у - О) 2 = 22. Графіком цього рівняння, за теоремою, є коло з центром у точці (-2; 0) ) та радіусом 2 (рис. 38).

Визначення 4.

Якщо поставлено завдання знайти такі пари значень (х; у), які одночасно задовольняють рівняння р (х, у) = 0 і рівняння q (х, у) = 0, то кажуть, що ці рівняння утворюють систему рівнянь:


Пару значень (х; у), яка одночасно є рішенням першого і другого рівнянь системи, називають рішенням системи рівнянь. Вирішити систему рівнянь - це означає знайти її рішення або встановити, що рішень немає.
Наприклад, пара (3; 7) - розв'язання системи рівнянь

Насправді ця пара задовольняє як першому, так і другому рівнянню системи, отже, є її вирішенням. Зазвичай пишуть так: (3; 7) - рішення системи чи A пара (5; 9) перестав бути рішенням системи (1): вона задовольняє першому рівнянню (хоч і задовольняє другому рівнянню системи).

Зрозуміло, змінні у рівняннях, що утворюють систему рівнянь, можуть бути позначені й іншими літерами, наприклад: Але в будь-якому випадку при записі відповіді у вигляді кількох чисел використовують лексикографічний метод, тобто. на перше місце ставлять ту із двох літер, яка в латинському алфавіті зустрічається раніше.

Іноді вдається вирішити систему рівнянь графічним методом, з яким ви знайомі: треба побудувати графік першого рівняння, потім побудувати графік другого рівняння та, нарешті, знайти точки перетину графіків; координати кожної точки перетину є рішенням системи рівнянь.

Приклад 6.Розв'язати систему рівнянь

Рішення.

1) Побудуємо графік рівняння х 2 + у 2 = 16 – коло з центром на початку координат та радіусом 4 (рис. 39).
2) Побудуємо графік рівняння у - х = 4. Це пряма, яка проходить через точки (0; 4) та (-4; 0) (рис. 39).
3) Окружність і пряма перетинаються в точках А та В (рис. 39). Судячи з побудованої геометричної моделі, точка A має координати А(-4; 0), а точка - координати В(0; 4). Перевірка показує, що пара (-4; 0) і пара (0; 4) є рішеннями обох рівнянь системи, отже, і рішеннями системи рівнянь. Отже, задана система рівнянь має два рішення: (-4; 0) та (0; 4).

Відповідь: (-4; 0); (0; 4).

Приклад 7.Розв'язати систему рівнянь

Рішення.

1) Переписавши перше рівняння системи як у = 2х 2 , приходимо висновку: графіком рівняння є парабола (рис. 40).
2) Переписавши друге рівняння системи у вигляді приходимо до висновку: графіком рівняння є гіпербола (рис. 40).


3) Парабола та гіпербола перетинаються у точці А (рис. 40). Судячи з побудованої геометричної моделі, точка A має координати A (1; 2). Перевірка показує, що пара (1; 2) є рішенням обох рівнянь системи, а значить, і рішенням системи рівнянь. Отже, задана система рівнянь має одне рішення: (1; 2).

Відповідь: (1; 2).

Графічний спосіб розв'язання систем рівнянь, як і графічний спосіб розв'язання рівнянь, гарний, але ненадійний: по-перше, оскільки графіки рівнянь ми зуміємо побудувати які завжди; по-друге, навіть якщо графіки рівнянь вдалося побудувати, точки перетину можуть бути не такими «хорошими», як у спеціально підібраних прикладах 6 і 7, а то й можуть опинитися за межами креслення. Отже, нам потрібно мати надійні алгебраїчні методи розв'язання систем двох рівнянь із двома змінними. Про це й йтиметься у наступному параграфі.


А.Г. Мордкович Алгебра 9 клас

Матеріали з математики онлайн, завдання та відповіді за класами, плани конспектів уроків з математики

Найменший загальний знаменник використовується для спрощення рівняння.Цей метод застосовується в тому випадку, коли ви не можете записати дане рівняння з одним раціональним виразом на кожній стороні рівняння (і скористатися методом множення навхрест). Цей метод використовується, коли вам дано раціональне рівняння з 3 або більше дробами (у разі двох дробів краще застосувати множення навхрест).

  • Знайдіть найменший загальний знаменник дробів (або найменший загальний кратний).НОЗ - це найменше число, яке ділиться націло на кожен знаменник.

    • Іноді НОЗ – очевидна кількість. Наприклад, якщо дано рівняння: х/3 + 1/2 = (3x +1)/6, очевидно, що найменшим загальним кратним для чисел 3, 2 і 6 буде 6.
    • Якщо НОЗ не є очевидним, випишіть кратні найбільшого знаменника і знайдіть серед них такий, який буде кратним і для інших знаменників. Найчастіше НОЗ можна знайти, просто перемноживши два знаменники. Наприклад, якщо дано рівняння x/8 + 2/6 = (x - 3)/9, то НОЗ = 8 * 9 = 72.
    • Якщо один або кілька знаменників містять змінну, процес дещо ускладнюється (але не стає неможливим). У цьому випадку НОЗ є виразом (що містить змінну), яке ділиться на кожен знаменник. Наприклад, у рівнянні 5/(х-1) = 1/х + 2/(3x) НОЗ = 3x(х-1), тому що цей вираз поділяється на кожен знаменник: 3x(х-1)/(х-1 ) = 3x; 3x(х-1)/3х = (х-1); 3x(х-1)/х = 3(х-1).
  • Помножте і чисельник, і знаменник кожного дробу на число, що дорівнює результату поділу НОЗ на відповідний знаменник кожного дробу. Так як ви множите і чисельник, і знаменник на одне й те саме число, то фактично ви множите дріб на 1 (наприклад, 2/2 = 1 або 3/3 = 1).

    • Таким чином, у нашому прикладі помножте х/3 на 2/2, щоб отримати 2x/6, і 1/2 помножте на 3/3, щоб отримати 3/6 (дрібні 3x +1/6 множити не треба, оскільки її знаменник дорівнює 6).
    • Дійте аналогічно у випадку, коли змінна знаходиться у знаменнику. У другому прикладі НОЗ = 3x(x-1), тому 5/(x-1) помножте на (3x)/(3x) і отримайте 5(3x)/(3x)(x-1); 1/x помножте на 3(x-1)/3(x-1) та отримайте 3(x-1)/3x(x-1); 2/(3x) помножте на (x-1)/(x-1) та отримайте 2(x-1)/3x(x-1).
  • Знайдіть х.Тепер, коли ви привели дроби до спільного знаменника, ви можете позбавитися знаменника. Для цього помножте кожну сторону рівняння на спільний знаменник. Потім розв'яжіть отримане рівняння, тобто знайдіть «х». Для цього відокремте змінну на одній із сторін рівняння.

    • У прикладі: 2x/6 + 3/6 = (3x +1)/6. Ви можете скласти два дроби з однаковим знаменником, тому запишіть рівняння як: (2x+3)/6=(3x+1)/6. Помножте обидві частини рівняння на 6 і позбавтеся знаменників: 2x+3 = 3x +1. Розв'яжіть та отримайте х = 2.
    • У другому прикладі (зі змінною в знаменнику) рівняння має вигляд (після приведення до спільного знаменника): 5(3x)/(3x)(x-1) = 3(x-1)/3x(x-1) + 2 (x-1)/3x(x-1). Помноживши обидві сторони рівняння на НОЗ, ви позбавитеся знаменника і отримаєте: 5(3x) = 3(х-1) + 2(х-1), або 15x = 3x - 3 + 2x -2, або 15х = х - 5 . Розв'яжіть та отримайте: х = -5/14.
  • © nvuti-info.ru, 2024
    Новини бізнесу, дизайну, краси, будівництва, фінансів